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Abstract. The scattering of linear waves by periodic structures is a crucial phenomena in many
branches of applied physics and engineering. In this paper we establish rigorous analytic results nec-
essary for the proper numerical analysis of a class of high-order perturbation of surfaces/asymptotic
waveform evaluation (HOPS/AWE) methods for numerically simulating scattering returns from pe-
riodic diffraction gratings. More specifically, we prove a theorem on existence and uniqueness of
solutions to a system of partial differential equations which model the interaction of linear waves
with a periodic two-layer structure. Furthermore, we establish joint analyticity of these solutions
with respect to both geometry and frequency perturbations. This result provides hypotheses un-
der which a rigorous numerical analysis could be conducted on our recently developed HOPS/AWE
algorithm.
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1. Introduction. The scattering of linear waves by periodic structures is a cen-
tral model in many problems of scientific and engineering interest. Examples arise in
areas such as geophysics [8, 67], imaging [51], materials science [28], nanoplasmonics
[24, 47, 64], and oceanography [10]. In the case of nanoplasmonics there are many
such topics, for instance, extraordinary optical transmission [23], surface enhanced
spectroscopy [50], and surface plasmon resonance (SPR) biosensing [31, 33, 35, 45].
In all of these physical problems it is necessary to approximate scattering returns in
a fast, robust, and highly accurate fashion.

The most popular approaches to solving these problems numerically in the engi-
neering literature are volumetric methods. These include formulations based on the
finite difference [43], finite element [34], discontinuous Galerkin [30], spectral element
[20], and spectral methods [9, 29, 66]. However, these methods suffer from the re-
quirement that they discretize the full volume of the problem domain which results in
an unnecessarily large number of degrees of freedom for a periodic layered structure.
There is also the additional difficulty of approximating far-field boundary conditions
explicitly [7].

For these reasons, surface methods are an appealing alternative, and we advocate
the use of boundary integral methods (BIM) [17, 40, 65] or high-order perturbation
of surfaces (HOPS) methods [11, 12, 13, 48, 49, 57, 59]. Regarding the latter, we
mention the classical methods of operator expansions [48, 49] and field expansions [11,
12, 13], as well as the stabilized method of transformed field expansions [57, 59]. All of
these surface methods are greatly advantaged over the volumetric algorithms discussed
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above primarily due to the greatly reduced number of degrees of freedom that they
require. Additionally the exact enforcement of the far-field boundary conditions is
assured for both BIM and HOPS approaches. Consequently, these approaches are a
favorable alternative and are becoming more widely used by practitioners.

There has been a large amount of not only rigorous analysis of systems of partial
differential equations which model these scattering phenomena but also careful design
of numerical schemes to simulate solutions of these. Most of these results utilize either
integral equation techniques or weak formulations of the volumetric problem, each of
which lead to a variety of natural numerical implementations. We recommend the
Habilitationsschrift of Arens [3] as a definitive reference for periodic layered media
problems in two and three dimensions. In particular, we refer the interested reader
to Chapter 1 which discusses in great detail the state of the art in uniqueness and
existence results for scattering problems on biperiodic structures. For the two dimen-
sional problem we further refer the reader to the work of Petit [62]; Bao, Cowsar, and
Masters [5]; and Wilcox [68]. In three dimensions, results on the Helmholtz equation
can be found in Abboud and Nedelec [1]; Bao [4]; Bao, Dobson, and Cox [6]; and
Dobson [22]. In the context of Maxwell’s equations, we point out the work of Chen
and Friedman [16] and Dobson and Friedman [21]. Of course the field has progressed
from these classical contributions in a number of directions, and survey volumes like
[5] give further details.

The previous work most closely related to the current contribution is that of
Kirsch [38] on smoothness properties of the pressure field scattered by an acoustically
soft, two-dimensional periodic surface. More specifically, it was demonstrated that
not only is this field continuous and differentiable with respect to a sufficiently small
boundary deformation, but it is also analytic with respect to illumination frequency
and angle of incidence, up to poles induced by the Rayleigh singularities (Wood anom-
alies) which does not violate our theory. We generalize these results in a number of
important ways. In addition, in contrast to their rather theoretical operator-theoretic
approach using results from Kato’s classical work [36], our method of proof is quite
explicit and results in a stable and highly accurate numerical scheme which we discuss
in [37].

Oftentimes in applications it is important to consider families of gratings interro-
gated over a range of illumination frequencies. An example of this is the computation
of the reflectivity map, R, which records the energy scattered by a layered structure
with interface shaped by z = g(x) and illuminated by radiation of frequency w (see,
e.g., [42]). Taking the point of view that this configuration is simply one in a family
with interface

illuminated by radiation of frequency
w=w+dw, dER,

where w is a distinguished frequency of interest, our novel HOPS/asymptotic wave-
form evaluation (HOPS/AWE) method [37, 53] is a compelling numerical algorithm.
In short, this scheme studies a joint Taylor expansion of the solutions of the scattering
problem in both € and 4. Upon insertion of this expansion into relevant governing
equations, the resulting recursions can be solved up to a prescribed number of Taylor
orders once and then simply summed for (g,d) many times. Clearly, this is a most ef-
ficient and accurate method for approximating R = R(e, ), as we have demonstrated
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in our previous work [37, 53], provided that this joint expansion can be justified.
The point of the current contribution is to provide this justification in the language
of rigorous analysis (see Theorem 4.7). Not only is this of intrinsic interest, but it
also provides hypotheses and estimates as the starting point for a rigorous numeri-
cal analysis of our HOPS/AWE scheme (see, e.g., [60] for a possible path) for this
problem.

We begin this program by assuming that € and § are sufficiently small. However,
we have demonstrated in [58, 61] for a closely related problem concerning Laplace’s
equation, the domain of analyticity in € is not merely a small disc centered at the
origin in the complex plane but rather a neighborhood of the entire real axis. We
suspect that an analogous analysis can be conducted in the current setting, and we
intend to pursue this in future work. By contrast, as pointed out in [38], the domain
of analyticity in ¢ is bounded by the presence of the Rayleigh singularities. We believe
that a similar analysis may prove fruitful in verifying that the domain of analyticity
can be extended right up to this limit which is supported by our numerics [37].

The paper is organized as follows: In section 2 we summarize the equations which
govern the propagation of linear waves in a two-dimensional periodic structure, and
in section 2.1 we discuss how the outgoing wave conditions can be exactly enforced
through the use of transparent boundary conditions. Then in section 3 we restate our
governing equations in terms of interfacial quantities via a nonoverlapping domain
decomposition phrased in terms of Dirichlet—-Neumann operators (DNOs). In section
4 we discuss our analyticity result with a general theory in section 4.1 and our spe-
cific result in section 4.2. This requires a study of analyticity of the data in section
4.3 and an investigation of the flat-interface situation in section 4.4. We conclude
with the final piece required for the general theory: The analyticity of DNOs (section
6). We accomplish this by first establishing analyticity of the underlying fields (sec-
tion 5) requiring a special change of variables specified in section 5.1. With this we
demonstrate the analyticity of the scattered field in sections 5.2 and 5.3. Given these
theorems, we prove the analyticity of the DNOs in section 6.

2. The governing equations. An example of the geometry we consider is dis-
played in Figure 1: a y-invariant, doubly layered structure with a periodic interface
separating the two materials. The interface is specified by the graph of the function
z = g(x) which is d-periodic so that g(x + d) = g(x). Dielectrics occupy both domains
where an insulator (with refractive index n*) fills the region above the graph z = g(x)

SW .= 12> g(x)},
and a second material (with index of refraction n*) occupies
SW) = {z < g(x)}.

The superscripts are chosen to conform to the notation of the authors in previous
work [52, 55]. The structure is illuminated from above by monochromatic plane-wave
incident radiation of frequency w and wavenumber k* = n%w/cy = w/c* (¢q is the
speed of light) aligned with the grooves

EZ(I Py t) — Aefiwtqtiazfiryuz HZ(I Py t) — Befithiarfi'y“z
o= k’u Siﬂ(e)7 ’yu = ku’ COS(Q).

We consider the reduced incident fields

E'(z,2)=“"E'(z,2,1), H'(z,2)=e“"H'(z,2,1),
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r

FiGc 1. A two-layer structure with a periodic interface, z = g(x), separating two material layers,
S and SW) | illuminated by plane-wave incidence.

where the time dependence exp(—iwt) has been factored out. As shown in [62],
the reduced electric and magnetic fields, like the reduced scattered fields, are a-
quasiperiodic due to the incident radiation. To close the problem, we specify that
the scattered radiation is “outgoing,” upward propagating in S and downward
propagating in S(*).

It is well known (see, e.g., Petit [62]) that in this two-dimensional setting, the
time-harmonic Maxwell equations decouple into two scalar Helmholtz problems which
govern the transverse electric (TE) and transverse magnetic (TM) polarizations. We
define the invariant (y) direction of the scattered (electric or magnetic) field by @ =
a(z,2) and @ = w(z,z) in S™ and S™), respectively. The incident radiation in the
upper field is denoted by ‘(z, 2).

Following our previous work [53] we further factor out the phase exp(iax) from
the fields @ and @

—tax [1e%

u(z,z) =e " *u(z, 2), w(r,z)=e " *"w(x,z),

which, we note, are d-periodic. In light of all of this, we are led to seek outgoing,
d-periodic solutions of

(2.1a) Au+ 2iadu+ (v*)?u =0, z>g(x),
(2.1b) Aw + 2iad,w + (v*)*w =0, z < g(x),
(2.1¢c) u—w=_¢, z=g(x),
(21d) aNu_ia(amg)u_T2 [an_ia(azg)w] =1, Z:g(x)v
where N :=(—0,g,1)T. The Dirichlet and Neumann data are

(2.1e) ((z) = —e "9

(2.1f) () = (" +ia(Dpg))e ™19,
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and

)

, 1 TE
T =
(k*/k")? = (n"/n")?, TM,
where k¥ =n"w/co =w/c" and v = k™ cos(0).
2.1. Transparent boundary conditions. The Rayleigh expansions, which are
derived through separation of variables [62], are the periodic, upward /downward prop-
agating solutions of (2.1a) and (2.1b). In order to truncate the bi-infinite problem

domain to one of finite size we use these to define transparent boundary conditions.
For this we choose values a and b such that

a>|g|oo’ _b<_|g|oo?

and define the artificial boundaries {z = a} and {z = —b}. In {z > a} the Rayleigh
expansions tell us that upward propagating solutions of (2.1a) are

oo

(2.2) u(z,z) = Z a,e Pt

p=—00

while downward propagating solutions of (2.1b) in {z < —b} can be expressed as

o0
,w(x’z): Z dpezpa:fz'y;”z7

p=—00
where, for p € Z and ¢q € {u,w},
_ 2mp . (k9)? —az, pelUl,
(23) p::77 Qp Z:O[—f—p, Wg =

i a%_(kq)2’ pguqa
and
Uul:= {])€Z|0512,<(kq)2}7

which are the propagating modes in the upper and lower layers. With these we can
define the transparent boundary conditions in the following way: We first rewrite
(2.2) as

u(z,z) = Z (@pemf;a) piPr+ivy (—a) _ Z £ cPrting (o),
p=—00 oo
and observe that
u(z,a) = Z épeim =:{(z),
p=—00
and
Dau(w,a)= Y (i)&e™ = T [&(x)],
p=—00

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/09/23 to 131.193.178.85 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

1742 MATTHEW KEHOE AND DAVID P. NICHOLLS

which defines the order-one Fourier multiplier T%. From this we state that upward-
propagating solutions of (2.1a) satisfy the transparent boundary condition at z =a

(2.4) d.u(z,a) — T u(z,a)]=0, z=a.
A similar calculation leads to the transparent boundary condition at z = —b
(2.5) d,w(x,—b) — T%[w(x,—b)]=0, z=-=b,
where
T @)= Y (e
p=—00

We note that these conditions enforce the upward and downward propagating condi-
tions described by Arens [3].
With these we now state the full set of governing equations as

(2.6a) Au+ 2iadu+ (v*)?u =0, z>g(z),
(2.6b) Aw + 2iad,w + (77)2w =0, z < g(z),
(2.6¢) u—w=C(, z=g(z),
(2.6d) Onu — ia(Dpg)u — 72 [Onw — i (Dp9)w] = 1P, z=g(x),
(2.6¢) d.u(z,a) — T [u(z,a)] =0, z=a,
(2.6f) O, w(x,—b) — T [w(x,—b)] =0, z=—b,
(2.6g) u(z +d, z) =u(x, 2),

(2.6h) w(z +d,z) =w(z, z).

3. A nonoverlapping domain decomposition method. We now rewrite our
governing equations (2.6) in terms of surface quantities via a nonoverlapping domain
decomposition method [18, 19, 46]. For this we define

U(z) :=u(x,g(x)), U(x) = —0nu(z,g(x)),
W(z):=w(z,g(x)), W(x):=0dyw(z,g(z)),

where u is a d-periodic solution of (2.6a) and (2.6e), and w is a d-periodic solution of
(2.6b) and (2.6f). In terms of these, our full governing equations (2.6) are equivalent
to the pair of boundary conditions, (2.6¢) and (2.6d),

(3.1a) U-W =,
(3.1b) — U — (ia)(0.9)U — 7% |W — (i) (8,9)W | = .
This set of two equations and four unknowns can be closed by noting that the pairs

{U,U} and {W, W} are connected, e.g., by DNOs, which [59] showed are well-defined
under the hypotheses presently listed.

DEFINITION 3.1. Given an integer s >0, if g € C**2, then the unique solution of

(3.2a) Au+ 2iad,u+ (v*)*u=0, z>g(x),
(3.2b) u="U, z=g(x),
(3.2¢) Ou(z,a) — T"u(x,a)] =0, z=a,
(3.2d) u(z +d, z) = u(x, 2),
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defines the upper layer DNO
(3.3) G:U—U.

DEFINITION 3.2. Given an integer s >0, if g € C**2, then the unique solution of

(3.4a) Aw + 2iad,w + (v*)*w =0, z < g(x),
(3.4D) w="W, z=g(z),
(3.4c) d,w(x,—b) — T"[w(x,—b)] =0, z=—b,
(3.4d) w(zr +d,z) =w(z, z).

defines the lower layer DNO
(3.5) J:W—=W.

The interfacial reformulation of our governing equations (3.1) now becomes
(3.6) AV =R,

where

0 A= (e i 21 oai) V() (%)

4. Joint analyticity of solutions. There are many possible ways to analyze
(3.6) rigorously. Following our recent work [37], we select a jointly perturbative ap-
proach based on two assumptions:

1. Boundary perturbation: g(x)=cf(z), ¢ € R,
2. Frequency perturbation: w= (1 +§)w =w + dw, d € R.

Remark 4.1. At inception one typically assumes that these perturbation parame-
ters, € and ¢, are quite small, and we can certainly begin there. However, we will show
that these only need be sufficiently small (e.g., characterized by the C? norm of f for
the domain of analyticity in €) but not necessarily tiny. Furthermore, following the
methods devised in [58, 61] for the related problem of analytic continuation of DNOs
associated to Laplace’s equation, we fully expect that the neighborhood of analyticity
in € contains the entire real axis. Beyond this we note that the domain of analyticity
in 0 is bounded by the Rayleigh singularities as discussed in [38]. However, it is possi-
ble that an extension of the approach in [58, 61] may deliver a rigorous justification of
our numerical observations in [37] that the region of analyticity in § extends right up
to the limit imposed by the Rayleigh singularities. Verifying each of these predictions
is a goal of current research by the authors.

The frequency perturbation has the following important consequences:

KT =0/t = (1+ 8)uwfet = (1+ 6)KT =k + 647, g€ fuw),
a=k"sin(f) = (1+0)k"sin(f) =: (1 +§)a=a+ dq,
¥ =kTcos(0) = (14 0)k? cos(f) =: (14 0)y? =~ + 674, q € {u,w}.

This, in turn, delivers

ap=a+p=a+da+p=:aq,+da.
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We now pursue this perturbative approach to establish the existence, uniqueness,
and analyticity of solutions to (3.6). To accomplish this we will presently show the
joint analytic dependence of A = A(e,d) and R = R(g,0) upon ¢ and § and then
appeal to the regular perturbation theory for linear systems of equations outlined in
[54] to discover the analyticity of the unique solution V =V (e,4). More precisely, we
view (3.6) as

A(g,0)V(e,8) =R(e,0),
establish the analyticity of A and R so that
(4.1) {AR}(£,0)=> > {Anm Rymle"d™,
n=0m=0
and seek a solution of the form
o0 o0
(4.2) V(e ) = Z Z Vime"d™,
n=0m=0

which we will show converges in a function space. To pursue this we insert (4.2) and
(4.1) into (3.6) and find, at each perturbation order (n,m), that we must solve

n—1 m—1
AO,OVn,m = Rn,m - Z An—E,OVZ,m - Z AO,m—rVn,r
£=0 r=0
n—1m—1
(43) - Z Z An—l,m—'r've,r-
(=0 r=0
A Drief inspection of the formulas for A and R, (3.7), reveals that
I —I
(448“) AO,O - (GO,O T2J0,0> )
0 0
Anym - (Gn,m T2Jn,m)
. 0 O
(4.4b) + 01 {1+ dm1}(0:f)(ia) 1 _2) n#0 or m#0,

(44c) Ry (—CZZZL) ,

where dy, 1, is the Kronecker delta function. Formulas for the terms {(, m,¥n.m} can
be found in [37] or by using the recursions described in section 4.3. The terms G,
and Jy, ,, are the (n,m)th corrections of the DNOs G and J, respectively, in a Taylor
series expansion of each jointly in € and 4. This is explained in section 6, together
with precise estimates of the coefficients, G, ,, and J, ,,, in the appropriate Sobolev
spaces. Finally, in section 4.4 we utilize expressions for the flat-interface DNOs, Gy o
and Jy o, to investigate the mapping properties of the linearized operator, Ag o, and
its inverse.

4.1. A general analyticity theory. Given these estimates, existence, unique-
ness, and analyticity of solutions can be deduced in a rather straightforward fashion
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using the following result from one of the authors’ previous papers [54, Theorem 3.2].
This result uses multi-index notation [25], in particular

€1 ni

EM nyr
and the convention

o0 o0 o0

~ ~ﬁ fr— e nl ... TLI\/I
E An € = E E An1,-~~JLMEl €M -
n=0

ni =0 nm =0

THEOREM 4.2. Given two Banach spaces, X and Y, suppose that B
1. Rs €Y for all n > 0, and there exist M-multi-indexed constants Cr > 0,

Br >0,
CR’I BJY-‘LclJ
Cr=| |, Br=| : |,
Cr,m Bp'yu
such that
IR:lly < CrBE,

2. Ag XY for all n >0, and there exist M —multi-indexed constants Cy > 0,
By >0 such that

3. Ag':Y — X, and there exists a constant C, >0 such that

Ay <C,.

1”)7—>X =

Then the equation (3.6) has a unique solution,
(4.5) V(E) =) Vi,
=0
and there exist M —multi-indezed constants Cy >0 and By > 0 such that
IVl <CvBy
for all n >0 and any
Cv >2C.Cr, By >max {Bm QBAACeC'ABA} ;

enforced componentwise. This implies that, for any M-multi-indexed constant 0 <
p <1, (4.5), converges for all € such that BE < p, i.e., € < p/B.

Remark 4.3. In the current context we will use this result in the case M =2 and

) () -0
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4.2. Analyticity of solutions to the two-layer problem. To state our theo-
rem precisely we briefly define and recall classical properties of the L?-based Sobolev
spaces, H®, of laterally periodic functions [40]. We know that any d-periodic L?
function can be expressed in a Fourier series as [40]

- ~ _ipT ~ 1 ¢ —1px
p@)= 30 e =g [ u)e s,
p=—00

We define the symbol (p)? := 1+ [p|? so that laterally periodic norms for surface and
volumetric functions are defined by

oo

2 25~ |2
Il = > B |l

p=—00

and

E} [e’¢) a s e’}
lullfe:=>" 3 (37" / lip(2)* dz=>" 3" B Nl 200

=0 p=—o0 £=0 p=—00

respectively. With these we define the laterally d-periodic Sobolev spaces H® as the
L? functions for which ||-|| = is finite. For our present use we define the vector-valued
spaces for s >0

X5 = {V: (1[4]/) ‘ UWe HS+3/2([O,d})} ,
and
Y* = {R: (—ip) ‘ Ce HT3/2([0,d)), v € HS+1/2([07d])}.

These have the norms

U
vis=| ()

R = (S,)

In addition to these function spaces we also require the following three results from
the classical theory of Sobolev spaces [2, 44] and elliptic partial differential equations
[25-27, 41]. (See also [32, 56] in the context of HOPS methods.)

2
= U N gevare + W parare

XS
2

2 2
=[C gsvsra + ([l gorasz -
YS

LEMMA 4.4. Given an integer s > 0 and any n > 0, there exists a constant
M = M(s) such that if f € C*([0,d]) and ue€ H*([0,d] x [0,a]), then

(4.6) [ full g < MIf

Cs U’HHg ’

and if f € C5TY/241((0,d]) and @€ HV/2([0,d)), then

(4.7) HquHs+1/2 =M ‘f’05+1/2+n ||u||Hs+l/2~
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THEOREM 4.5. Given an integer s > 0, if F € H*([0,d]) x [0,a]), U €
H*+3/2([0,d]), P € H*t'/2([0,d]), then the unique solution of

Au(z, 2) + 2iadu(z, 2) + (v*)*u(z, z) = F(z, 2), 0<z<a,
U(SC,O):U(I,O)7 z=0,
du(z,a) — T u(z,a)] = P(x), z=a,
u(z +d, z) =u(z, 2),

satisfies

(4.8) [l oo < Ce {1 F s + 11U geovasz + 1Pl grovar}

for some constant C. >0, where T = i}, corresponds to the 6 =0 scenario.

LEMMA 4.6. Given an integer s >0, if F € H*([0,d]) x [0,a]), then (a — 2)F €
H?([0,d]) x [0,qa]), and there exists a positive constant Z, = Z4(s) such that

@ =2)Fllgs <ZallFl g -

We now state our main result.

THEOREM 4.7. Given an integer s > 0, if f € C*t2([0,d]), then (3.6) has a
unique solution, (4.2). Furthermore, there exist constants B,C, D >0 such that

Vimll e <CB"D™

for all n,m > 0. This implies that for any 0 < p,o <1, (4.2) converges for all € such
that Be < p, i.e., e <p/B and all § such that D§ <o, i.e., 6 <o/D.

Proof. As mentioned above, our strategy is to invoke Theorem 4.2, and thus we
must verify its hypotheses. To begin, we consider the spaces

X=X° Y=Y°*

In section 4.3 we will show that the vector R, ,,, consisting of (. and ¥y, m,, is
bounded in Y* for any s > 0 provided that f € C*T2([0,d]). (This implies that the
R, satisfies the estimates of item 1 in Theorem 4.2.)

Then in section 6 we show that the operators G,, ,,, and J,, ,,, in the Taylor series
expansions of the DNOs satisfy appropriate bounds provided that f € C**2([0,d]).
With this, it is clear that the A, ,, satisfy the estimates of item 2 in Theorem 4.2.

Finally, in section 4.4 we show that the estimates and mapping properties of Ag (1)
for item 3 in Theorem 4.2 hold.

4.3. Analyticity of the surface data. To establish the analyticity of the
Dirichlet and Neumann data obeying suitable estimates, we begin by defining

E(x;e,0):= e+ ef ()

and note that we can write (2.1e) and (2.1f) as
((x) =((z;8,0) = =E(x;¢,0),
(@) =1p(w;e,0) = {i(1+0)7" +i(1+ d)a(e0: f) } £(xse,0).

We will now demonstrate that the function £ is jointly analytic in € and § and subject
to appropriate estimates, which clearly demonstrates the joint analytic dependence of
the data, ((x;¢,0) and ¥(x;¢,0).
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LEMMA 4.8. Given any integer s > 0, if f € C*T2([0,d]), then the function

E(x;e,0) is jointly analytic in € and §. Therefore

(4.9) E(x;e,0) = i i Enm ()™,

n=0m=0

and, for constants Cg,Bg, De >0,
(4.10) [En,mll etz < CeBg D'

for all n,m > 0.

Proof. We begin by observing the classical fact that the composition of jointly
(real) analytic functions is also jointly (real) analytic [39] so that (4.9) holds and move
to expressions and estimates for the &, ,,,. By evaluating at e =0 we find that

E(x;0,0) =1,
so that

1, m=0,
0, m>0.

50,m (.’L‘) = {

For € > 0 we use the straightforward computation
0:£ ={~i(1+0)y"f} €,

and the expansion (4.9) to learn that, for m =0,

—iytf
(411) gn+1,0 - (71"'1) gn,()a
and, for m > 0,
—i"f
4.12 = = 1}
( ) gn+l7m ( TL+1 ) {gn,m +gn7m 1}

We work by induction in n and begin by establishing (4.10) at n =0 for all m > 0.
This is immediate as

1€0,0

We now assume (4.10) for all n <7 and all m >0 and seek this estimate in the case
n=mn and all m > 0. For this we conduct another induction on m, and for m =0 we
use (4.11) (together with Lemma 4.4 with §=s+ 1) to discover

‘lu’ |f‘CS+3/2+n
n

|Hs+3/2 = 1, ||£O,m||Hs+3/2 =0.

Hgﬁ—l,OHHerS/z

||8'7L70||Hs+3/2 S M (
u
<M (W‘) CeBE ' < CeBE,
provided that

Be > M ‘l“’ |f‘Cs+2 >M (W) .
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Finally, we assume the estimate (4.10) for n =7 and m < m, and use (4.12) to learn
that

VN lesras
1€n.mll 5752 < M ("g (€1l gess/2 + I€n—1m 1l goss/2}

gM(“'i“”)@{%*Bﬁ+@”D$ﬂ
SCEB?D?v
provided that
M <|7u| |J_c CS+2> < &7 M (|’7u| \{ c-s+2> < B£D5’
n 2 n 2

which can be accomplished, e.g., with

&zmwmhwzmwhhﬁmy De>1,

and we are done. O

With Lemma 4.8 it is straightforward to prove the following analyticity result for
the Dirichlet and Neumann data.

LEMMA 4.9. Given any integer s > 0, if f € C*t2([0,d]), then the functions
C(x;8,8) and ¥(x;¢,06) are jointly analytic in e and 6. Therefore

(1.13) (@50 = 3 (G Ynn } (@)e5™

n=0m=0

and, for constants C¢, B¢, D¢ >0, and Cy, By, Dy >0,
(4.14) ||<n,m||Hs+3/2 < CCB?D?7 Hwn,m”Herl/? < Cl/’BzD?T

for all n,m >0.

4.4. Invertibility of the flat-interface operator. The final hypothesis to be
verified in order to invoke Theorem 4.2 is the existence and mapping properties of the
linearized (flat-interface) operator Ag . In our previous work [37] we showed that

I -1
(415) AO,O - (G070 7.2(]070) )
where
(4.16) Goo=—17p, Joo=—i7p,

are order-one Fourier multipliers defined by

oo oo

(4.17) G070[U]: Z (71‘7;)01)61'13:1:’ JO,O[W]: z (72'7;:))1;[/;,6@‘%.

p=—00 p=—00

LEMMA 4.10. The linear operator Ag,o maps X° to Y* boundedly, is invertible,
and its inverse maps Y° to X° boundedly.
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Proof. We begin by defining the operator
A:=Goo+77Jo0 = (—ivp) + T (—ivD),
which has Fourier symbol
A, = (—ing) + 7% (i),
and noting that there exist positive constants Cg, Cy, and Cxa such that
il <Ca, |-npl<cad, |A|<cam.

Importantly, provided that n" #n", it is not difficult to establish the crucial fact that
A, #0. Finally, one can also find a positive constant Cx-1 such that

1 o
<Op-1 ()"

P

With this it is a simple matter to realize that A~! exists and that
A:Hs+3/2 _>H3+1/2 A_l :Hs—&-l/Q %HSJ'_S/Z.

Next, we write generic elements of X° and Y* as

_(U s _( ¢ s
Vo (L)ex me($)er

Using the definitions of the norms of X* and Y* and the facts
2ab<a®+0°, [|A+BI* <(|Al +IBI)?,
we find that
| 800 VIS, = U = WlZeaa +[|Gool +72J00W |7y
<2 ||UH?qs+3/z +2 HW||§1-<+3/2 +C¢ ||U||?{s+3/2
+TZCGOJ(||UH§I-<+3/2 + ||WH§{-§+3/2) +C5* HW||§1+3/2
< max{2,C2,72CeCy, 74 C2) (||U||i15+3/2 + ||W||§,s+3/2)
= max{2, 0%, 72 CcCy, 7 C3} |V|[%. ,
so that Ay o does indeed map X* to Y* boundedly. We define the operator

2
L 1 (T J(),O I
B o A (_0070 I) ’

and note that
BAgo=Ap0B= <é ?) ;
so that the inverse of A exists and Ay (1) = B. Furthermore, as above,
|AGoRI . = 187 T0.0¢ =) [ vara + |87 (=Co0C =) 21
< CRAT CF |l Fgarsse + CRAT CrlIClzresars + [0 [7resr/2)
+ CAsC& W2+ CAs Callzyaase + [l Fs/2)
+2C3 - [l
< Oy max{2, Ca, O3, 72, 73} (Gl e + 161521/2)
= C% .1 max{2,Cg,C2,72C;, 7' C2}|R|5-,
and A(Itl) maps Y?® to X* boundedly. ]

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/09/23 to 131.193.178.85 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1751

5. Analyticity of the scattered fields. At this point we establish the analyt-
icity of the fields which define the DNOs, G and J, though, for brevity, we restrict
our attention to the one in the upper layer, G, and note that the considerations for
the lower layer DNO, J, are largely the same.

5.1. Change of variables and formal expansions. For our rigorous demon-
stration we appeal to the method of transformed field expansions (TFE) [56, 59] which
begins with a domain-flattening change of variables (the o-coordinates of oceanog-
raphy [63] and the C-method of the dynamical theory of gratings [14, 15]) to the
governing equations, (3.2),

(5.1) o =g, z’:a(z_g(‘r))

a—g(z)

With this we can rewrite the DNO problem, (3.2), in terms of the transformed field
_ !
w2, 2) i =u (x', (ag(a:)) 2’ —|—g(x’)> ,
a

as (upon dropping primes)

(5.2a) Au + 2iadu+ (v*)*u = F(z, 2), 0<z<a,
(5.2b) u(xz,0) =U(z), z=0,
(5.2¢) d,u(x,a) — T"[u(z,a)] = P(z), z=a,
(5.2d) u(z +d, z) = u(x, 2),

T§t =1iv},6 =0 and the DNO itself, (3.3), as
(5:3) G(9)[U] = -0.u(,0) + H(z).

The forms for {F, P, H} have been derived and reported in [59] and, for brevity, we
do not repeat them here.

Following our HOPS/AWE philosophy we assume the joint boundary/frequency
perturbation

g(@)=cf(z), w=w+ow=(1+0w,

and study the effect of this on (5.2) and (5.3). These become

(5.4a) Au+ 2iadu + (v*)*u = F(z,2), 0<z<a,
(5.4b) u(z,0) =U(z), z=0,
(5.4c) du(z,a) — T u(z,a)] = P(x), z=a,
(5.4d) u(z +d, z) =u(x, 2),

and

(5.5) G(ef)[U] = —0.u(x,0) + H(z),
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where F, P, H = O(c) + O(5). More specifically,

F = —ediv[A,(f)Vu] — 2div [As(f)Vu] — eBy (f)Vu — e2Bs(f)Vu
— 2iad0,u — 6%(v")?u —28(y*)?u
— 2ieS1 (f)adyu — 2ieSy (f)add,u —eSi(f)6*(v*)*u

—2e51(£)6 (") ?u—eS1(f)(7*)*u

— 2285 (f)ad,u — 2ie2 S (f)addpu — 6252(]‘)(52(1“)21&
(5.6) —2e%55(f)0(v")u — 2 S2(f) () u
and
(5.7 P= ()T [ula,a)] + (T~ T§) [u(r, )],
and

Laepw)-

It is not difficult to see that the forms for the A;, B;, and S; are

&_2 f(aacf)

(5.8) H=e(0,f)0u(x,0)+¢ Opu(,0) — e%(0pf)?0.u(x,0).

(5.92) A0:<(1) (1))

sy =4k A0 =1 (L ey T,
o9 an=(35 2E)=5 (- Jron (-0 D):
and

w0 s (F)-1(). mo-(3) -5 ()
and

(5:11) So=1, SiP)=—f SU)=5/

At this point we posit the expansions

u(z, z;€,0) = Z Z Un,m(x,2)e™0™, G(g,0)= i i Grme™ 0™,

n=0m=0 n=0m=0

and, upon insertion into (5.4) and (5.5), we find

(5.12a) Ay, + 200051, m + (lu)zun,m = Fn)m@?, z), 0<z<a,
(5.12b) Un,m (@,0) = Uy m (), z=0,
(5.12¢) Otiym (2, 0) — Tt (2, 0)] = Ppyn (), z=a,
(5.12d) Un,m (T +d, 2) = Up m (T, 2),

and

(513) Gn,m(f) = _azun,m(xvo) + ﬁn,m(x)-
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The formulas for me, ﬁmm, and f[n,m can be readily derived from (5.6), (5.7), and
(5.8) giving

Fy o =—div[Ai1(f)Vup—1,m] — div[A2(f) Vir—2.m]
— B1(f)Vun—1,m — B2(f)Vn—2.m
— 2600, Un,m—1 — (1“)2un,m,2 — 2(1")2un7m,1
— 2081 (f)a0pun—1,m — 2iS1(f)QOptin—1,m—-1 — S1(f)(7*)*Un—1,m—2
—25; (f)('}/u)2un—1,m—1 - Sl(f)(lu)Qun—l,m

- 2iS2(f)Qamun72,m - ZiSQ(f)gaxunfszl - SZ(f)(lu)zunflanQ

(514> - 252(f)(lu)2un72,m71 - SQ(f)(lu)2un72,m7

and
m m—1

(15)  Pam= @)Y T @] 3 T [ (,0)],
r=0 r=0

and

Hn,m = (8xf)axun—1,m(x70) + an—l,m(f)[U] - @898“71—2,'";(37’ 0)
(5.16) — (02 f)?0sttn—2m(x,0).

5.2. Geometric analyticity of the upper field. To prove our joint analyticity
result we begin by stating the single, geometric, analyticity result for the field u
under boundary perturbation, ¢, alone. This was essentially established in [56] but
we present it here for completeness.

THEOREM 5.1. Given any integer s > 0, if f € C72([0,d]) and U, €
H*+3/2([0,d]) such that

(5.17) HUn,OHHs+3/2 < KUB[T}
for constants Ky, By >0, then u, o € H**2([0,d] x [0,a]) and
(5.18) [tn,o0ll o> < KB"

for constants K, B > 0.

To establish this we work by induction and the key estimate is the following
lemma.

LEMMA 5.2. Given an integer s >0, if f € C*72([0,d]) and
(5.19) lunollore S KB"™  for alln<m

for constants K, B >0, then there exists a constant C >0 such that

0 ‘Hﬁ+1/2} SK@{L}C

Proof of Lemma 5.2. We begin with F o and note that from (5.14), (5.9), (5.10),
and (5.11) we have

7,0

(5.20) max{’ s BT |

2 T —
P B" 2} )

) n,
Hs
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1B 0l S IIAT*Optim—1.0ll7r01 + | AT Octiz—1.0l| 301 + AT utizm—1.0ll370 11
+ || AF*0.um—1,0 ?qs“ + HAgmazuﬁ—onquﬂ + HAgzazuﬁ—Z,OH%[erl
+ | A5 Oz 2,0 || 3e1 + | A57 0z um 2.0l 71 + | B Ozuim—1,0 =
+ || Bf 02um 1.0l e + || B Ouuim—2,0l37+ +
+|[2S1iadum—1,0l13 + 191(¥*) ur—1,0l 7 + [|252000,um—2,0|
+ [192(v*) *um—2,0l| 7 -

| B50:uzm—2,0l|7

2
Hs

We now estimate each of these by applying Lemmas 4.4 and 4.6. We begin with

AT Opum—1 0l o1 = || = (2/a) fOrum—1 0l ot
< (2/a)M|f|cs+ ||Uﬁ—1,0||Hs+2
< (2/a)M|flgun KB,

and in a similar fashion

|AT* 0. um—1 0l e+ = || = (@ = 2)/a)(0u f)Ozum—1,0l s+
< (Za/a)M|0y fleos+r||[um—1,0l gro+e
<(Za)a)M|f|cs+2 KB

Also,

AT Ozum—1,0

e = [ = (= 2)/0) (0s f) By 1.0]| oo
S (Za/a)M|a$f
< (Za/a)M|f

o= llum—1,0l| mre+2
Cs+2KBH_1’

and we recall that A7* =0. Moving to the second order

men =[(1/a?) f20pum—2,0| gre+s

< (1/a)M?|f

| A3* Opum—2.0]

%s+1 Huﬁ—zo |HS+2

<(1/a®)M?|f|tin KB™ 2.
Also,
1A5* 0 um—2.0l| ro+2 = [|((a — 2)/a?) (9 f)Optim—2,0 o1
< (Za)a®)M?| fla1]0p flost ||um—2,0| rose
< (Za)a®)MP|f|Ger2 KB,
and
|45 Opuz—s 0l o+ = [|((a — 2)/a®) f(0: f)D:tizm—2,0 o1
< (Za)a®) M| fl e |0 floosr lum—z,0l| oo
< (Za/a®) M| f| e KB 2,
and

457 0.um—2,0ll o1 = || ((a = 2)?/a®)(0x ) ? Oz tim—2.0]| o1
<(Z2/a*) M0 f |Gt |[um—2,0 || rro+2
< (Zg/az)MQ‘f|ch+2KBﬁ_2~
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Next for the By terms

| BY Ozum—1,0ll s = [[(1/a)(0s ) Optim—1,0|| 1=

< (l/a)./\/l‘azflcs ||UW,170| Hs+1
< (1/a)M|flcen KB,
and Bf =0. Moving to the second order
1B3 utir—2,0l = = [|(=1/0%) f (02 f)Dutiz—2,0 -
< (1/a*) MP(f| 0+ |0 fles |[um—2.0l o+
< (1/a*)M?|f|gern KB™2,

and
|1 B30 um 2.0l = 1(—1/a?)(a — 2) (8 f)*O-um 20| -

S(Za/az)M2‘axf 205 UH—Z,OHHSJrl
< (Zaf )M f o KB,

To address the Sy, S1,.52 terms we have

1251120, um—1,0|lms = ||[(—4/a)iafOrun—1,0| m-
< (4/a)aM|f|cs ||um—1,0]
< (4/a)aM|f|cs KB" ',

Hs+1

and
151 (") um—1,0ll s = [1(=2/a)(v*)* fum—1,0ll s
< (2/a)(v*)*M|flcs lum—1.0llms
<(2/a)(y")*M|flc-KB" ",
and
128210, um—o0| = = ||(2/a®)iaf?Optin—o0| -
< (2/a*)aM?(f (B lum—2.0ll o+
< (2/a®)aM?|f|3- KB" 2,
and

1S2(v*) 2 um—2.0ll s = [1(1/a?) (1) fPum 2,0 1¢
< (1/a2)( ")2M2|f%3|\uﬁ,2,0|

gl He
< (1/a®) (") M| fIG. KB,

We satisfy the estimate for || Fy 0| s+ provided that we choose

a a?

_ 3427, +4a+2(y*)? 2+3Z, + Z2 +2a + (7%)?
C>max{< a+20") >./\/l,< a+ (")

1755

)<}
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The estimate for Pﬁ,o follows from an elementary estimate on the order-one Fourier
multiplier 7§

”PH’OHHSH/Q == (1/a) fT¢ [UH—LO] | etz
< (/@M1 leor 2 T D o] v
< (1/G)M|f|Cs+1/2+nC'Té,, uﬁ_170||H5+3/2
< (1/a) M| fgmss 22nCry KB,
and provided that
c> (1/a)MCry,
we are done. i

With this information, we can now prove Theorem 5.1.

Proof of Theorem 5.1. We proceed by induction in n and at order n = 0 and
m =0 Theorem 4.5 guarantees a unique solution such that

HUO,OHHSJr2 < Ce||U0,0||Hs+3/2.

So we choose K > C.||Up ol gs+3/2. We now assume the estimate (5.18) for all n <7
and study usm,0. From Theorem 4.5 we have a unique solution satisfying

lumollze+2 < Ce{ll Faoll e + |Unollmessre + | Paoll gresase},
and appealing to the hypothesis (5.17) and Lemma 5.2 we find
lumollzess < Col Ky BE +2KC [|flgers B™ + {202 B™2]}.
We are done provided we choose K > 3C. Ky and

B> max {Bw 6C.C|f|cerz,\/6C.C|f

Cota } 0

Analogous results hold in the lower field which we record here for completeness.

THEOREM 5.3. Given any integer s > 0, if f € C72([0,d]) and W, €
H*+3/2([0,d]) such that

[Whollra+s/2 < Kw By
for constants Ky, Bw >0, then wy, o € H¥T2([0,d] x [-b,0]) and
w0l gs+2 < KB™
for constants K, B > 0.

5.3. Joint analyticity of the upper field. We can now proceed to prove our
main result concerning joint analyticity of the transformed field.

THEOREM 5.4. Given any integer s > 0, if f € C*T2([0,d]) and U, ., €
H*+3/2([0,d]) such that

(5.21) [Unll g < Ku B D
for constants K7, By, Dy >0, then u, m € H*T2([0,d] x [0,a]) and
(5.22) | tn,m |l gs+z < KB"D™

for constants K, B, D > 0.

As before, we establish this result by induction.
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LEMMA 5.5. Given an integer s >0, if f € C*72([0,d]) and
(5.23) ltunmllrs+2 < KB"D™  for alln>0,m <™

for constants K, B, D >0, then there exists a constant C >0 such that

x| B el 12+,

Pl gevira} < KC{B"D’"1 +B"DT 2 4 [ flosr2 BT DT
|f
f

Cs+2Bn_1Dm_1 + |f|cs+2Bn_1DTn_2 + |f

2 —2ym
CS+QBn D™+

QCS+ZB7’7,72Dﬁ71 + |f|2045+28n2Dm2}-

Proof of Lemma 5.5. We begin with F), 7 and note that from (5.14), (5.9), (5.10),
and (5.11) we have

HFn,ﬁH%IS < HAiMaI“n—LﬁH%ISH + HAiﬂzazun—l,ﬁ”%Isﬂ + ||Aizawun—l,ﬁ”%15+l
+ ”Afzazunfl,ﬁ”%{sﬂ + ||A§$axunf2,ﬁ||ils+l + ||Agzazunf2,ﬁ”§{s+l
+ ”A;Zafcun—?,m”%qsﬂ + ||A§Z8zun—2-ﬁ”§15+l + HBfazun—l,W”%{S
+ 1B 0z tin -1 |7+ + (1B Otin—2 |77 +
+ 12008, un m-1 7 + 1(2") *unm—2lirs + 11200 wnm—1 17
+ 11281 ia0ptn 1 |35 + ||2$1ig3xun_17m_1|\%{5 + ||Sl(1")2un_1,m_2||?{s
+ 11281 (0") un—1m-1 e + 151(0")  un—1ml 7 + 12521000 —o0m | ;-
+ (128200, un—2m—1117- + [|S2(1*)*Un—2,m—2| 315

+ 11282 (1) *un—2m -1l + 152(3")*tn -2 | o -

| B50-tun—o.m | 1

We now estimate each of these by applying Lemmas 4.4 and 4.6. We begin with

AT Optin—1 | =0 = || = (2/0) fOrum—1, |l o
< (2/a)M| flos+i|Jtn—1m mo+e
< (2/a)M|f|cs+1 KB" D™,

and in a similar fashion

AT 0z un 1l eer = [l = ((a = 2)/a) (00 f)Oztin 1 ml| o+
< (Za/a)M|Ox f ot [[un—1 ]| o+
< (Za/a)M|f|cs+2 KB "~ID™.

Also,

[AT" Opun—1 |l reer = | = ((a = 2) /@) (00 ) O tin 1 | o1
< (Za/a)M|Or f o [[un—1 | o+
<(Zy)a)M|f|cor2 KB D™,

and we recall that A7* =0. Moving to the second order

| AS* Bxtin—2m | ro+1 = [|(1/0®) f2Outin—2 | ross
< (1/a2)./\/l2|f|%5+1 Hun—Q,ﬁHH5+2
<(1/a®)M?|f|2.s. KB 2D™.
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Also,
14578 tn o || o1 = |((@ = 2)/a®) f(Da ) D tin—2.m| ot
< (Za)a®) MP|f| o110 flossr | un—2 | e
< (Za/a®)MP|f|Ger2 KB D™,
and
|45 0yt —2ml| o1 = || ((a = 2)/a®) [ (82 f)Dztin—2 3 ro+s
<(Za)a®) MP|flos1]0 flosir [un—2 | prase
< (Za)a®)MP|f|Gur2 KB 2D,
and

1457 0 tn 2wl o1 = [[((a = 2)?/0*) (00 f)? Octin 2.7 | o+
< (Ze/a*)M?|0. f
< (Za/a)M?|f

2.ttt el v

22 KB"2D™,

Next for the By terms
| BY Oz -1 1= = [[(1/a)(0z f) Oz tin—1 7| 1=

< (1/a)M|0, f

< (/a)M|f

Cs unfl,ﬁHHSJrl
cs1 KB 1D™,

and Bf =0. Moving to the second order

1B 0ptt—2,m e = ||(=1/a®) (D2 f)Dstin—2,5 11+
< (1/a®)M?| flee|0x fles un—2m| e
< (1/a®*)M?|f|%es: KB"2D™,

and
B30 tn—2ml e = (=1/0®)(a — 2)(0x f)? O tin—2 | -

< (Za/a2)M2‘axf 205 un—Z,mHHSJrl
<(Zo)a*)M?|f|2n KB 2D™.

To address the Sy, S1,.52 terms we have

||2igazun,m71 ||H’ < QQHUn,ﬁfl ||HS+1

<2aKB"D™ 1,
and
1y w2l e < (1) ||t 2| 12+
< (KB DT,
and

1200") w1 e < 2(3")* [l 71|
< 2(lu)2KBan71,
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1251120, tun—1 mllme = ||[(—4/a)icfOrtn—1m | H-
< (4/a)aM|flcs[[un—1ml s+
< (4/a)aM|f|c<KB"'D™,

1251100, un—1m—1|ms = ||(—4/a)iafOrtn—1m—1|H:
< (4/a)aM|f
< (4/a)aM|f

Cs||Un—1,m—1 ||Hs+1
c:KB" 'D™

191 (v*) *un—1,m—2ll e = (=2/a) (") ftin—1 77—2 | =
< (2/a)(lu)2M‘f Cs un—l,m—QHHS
<(2/a)(y")*M|flo: KB~ D™,

1281 (v*) 2t -1 -1l = | (=4/a)(v*)? fum—1,m—1 | mre
< (4/(1)(1“)2M|f|cs lton—1m—1] 2=
<(4/a)(y")? M| flcs KB" D™,

)(¥")? fum—1,mll ms
M f
Mf

181 (v*) *ttn—1,mll 2= = || (=

<(2/a
<(2/a

2/a
)( Cs un—l,m”HS
( c: KB" D™

ol
a)(7*)

12S2i0pttn—o 7 e = ||(2/a?Viaf? Oprin—2 || mrs
< (2/a*)aM?(f[?

2t 1o+
< (2/a?)aM?|f|%. KB"2D™,

1252100, un—2 m—1| s = ||(2/a2)iaf28 Un 2,m—1|| H
<(2/a*)a
<(2/a*)aM? |f|05 KB"~ 2Dm 1,

1S2(v*)? tn 22l s = [1(1/a*)(v*)? fPtun—2,m—2| o
<(1/a®) (") M?| I

Y Co [un—2m—2| me
<(1/a®) (") M?| £ KB 2D 2,
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and
1252 (") tn—25m 1l s = 1(2/a 2)(1“)2f2un 21 me
<(2/a*)(2")?
<(2/a®) (")’ M?|f cSKB” 2Dm 1,
and

1S2(v* un—s.mllar- = 1(1/a®) (72 F s
< (1/a®)(y" ) M2 2 ltn 270 | 1
< (1/a%)(y")> M| f 2. K B"~2D"™.

We satisfy the estimate for || F, 7| g+ provided that we choose

_ 342Z, +8a+8(1%)?
C>max{(2a+3(7u)2),< + +8a +8(7") )M,

a

<2+3ZQ+Z§+4a+4(7“)2> MQ}.

a2

The estimate for ]57“% follows from the mapping properties of T,

m m—
P, =||—- g Te  [u g Te_ . |u
H | g1y f Z m—r [Yn— lr m—r nT

Hs+1/2
(1/(1)M|f <+1/2+WZH m—r un 1,r HH9+1/2 +Z || —r Unr HH*‘H/Z
r=0
m—1
< (1/a)M|f|gs+1/240Cru Z lltn—1 rHHe+d/2 + Cru Z ”un T||Hs+3/2
r=0 r=0

D™ 1 D™ —1
n—1 " n
Cs+1/2+nCTuKB (D 1 ) +Cr« KB ( D_1 ) R

and provided that D > 2 and

<(/a)M|f

C >max {(1/a)MCqpu,Cru }

we are done. O
With this information, we can now prove Theorem 5.4.

Proof of Theorem 5.4. We proceed by induction in m and at order m = 0 Theorem
5.1 guarantees a unique solution such that

[|ten,0llfrs+2 < KB™ for alln > 0.

We now assume the estimate (5.22) for all n,m < and study «,, 7. From Theorem
4.5 we have a unique solution satisfying

n | o2 < Ce{ll Bl e+ Un | rovsrz + | Pall o2}
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and appealing to the hypothesis (5.21) and Lemma 5.5 we find

|t ]| pro2 <Ch {KUB{}D{}L +2KC (B”D’”‘l +B"D" % 4 |f|lesr2B" D™+

CS+QB7L—1DW—1 4 |f Cs+2Bn—1Dﬁ—2 + |f

%S+2 Bn—QDm—2> }

We are done provided we choose K > 9C. Ky and

|f 205+2 Bn—QDﬁ_’_

f

%S+2Bn—2Dﬁ—1 + |f

B > max {BU, 18C,C|f|os2, A/ 18C.C| f| o2 }

D > max {1, Dy, 18C.C,\/ 18066}. q

As before, a similar analysis will establish the joint analyticity of the lower field
which we now record.

THEOREM 5.6. Given any integer s > 0, if f € C*T2([0,d]) and Wy, €
H*+3/2([0,d]) such that

IWa,mllpresars < Kw By Dy
for constants Ky, Bw,Dw >0, then wy, m € H*T2([0,d] x [~b,0]) and
Hwn,m||Hs+2 < KB"D™

for constants K, B, D > 0.

6. Analyticity of the DNOs. Now that we have established the joint analyt-
icity of the upper field u we move to establishing the analyticity of the upper layer
DNO, G(g) =G(ef). To begin we give a recursive estimate of the H, ,, appearing in
(5.16).

LEMMA 6.1. Given an integer s >0, if f € C*T2([0,d]) and
(6.1)  |[tnm|lger2 <KB"D™, |Gumllgerrz <KB"D™  for alln <7,m >0

for constants K,B,D,K,B,D > 0, where K > K,B > B,ﬁ > D, then there exists a
constant C' >0 such that

(62 Hmmlpese <KC{|f

o2 BPLD™ | f\ZCHQB"‘QDm} .
Proof of Lemma 6.1. From (5.16) we estimate

||ﬁﬁ,m||Hs+l/2 S ./\/l|8wf
1

+M|f
a

cs+1/24n ||OpUm—_1,m (m, 0) HHSH/2

cat1/240 ]| Gaor,m () (U]l oo/

O f

8zUﬁ_2,m(l‘, 0) ||Hs+l/2 .

Cs+1/2+n &Cuﬁ,g,m(x, 0) ||Hs+1/2

1
+ gM2|f C's+1/24n
+M2‘8mf|208+1/2+n
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This gives

Cs+2 B 1pm

- . L~ 1
Vo172 < R{MIflos2 B2 D™ + —Mf

1 o L
—|—5M2\f %SHansz_|_./\/12|f‘205+2Bn72Dm}7

and we are done provided
. 1 9
C> 1—|—a max{M, M~} 0

We now have everything we need to prove the analyticity of the upper layer DNO.

THEOREM 6.2. Given any integer s > 0, if f € C*T2([0,d]) and U,., €
H*+3/2([0,d]) such that

1Un.ml gevare < KuBg Dy}
for constants Ky, By, Dy >0, then Gy, € HS'H/Q([O,d]) and
(6.3) Gl pgosi2 < KB D™

for constants K.B,D>0.

Proof of Theorem 6.2. As before, we work by induction in n. At n =0 we have
from (5.13) that

GO,m - _azuo,m(xv 0)7
and from Theorem 5.4 we have
|Go,mll gst172 = [|0210,m (2, 0) || o172 < [uo,m || ge+z < KD™.

So we choose K > K and D > D. We now assume B > B and the estimate (6.3) for
all n <m; from (5.13) we have

|Grm (DO o172 < (102t (2, 0) | 4172 + || Hraya (2) | gro1/2-
Using the inductive hypothesis, Lemma 6.1, and Theorem 5.4 we have

|G (DN g1z < KB™D™ 4+ KC {|flows BT D™ +|f

2CS+ZBH—2Dm} .
We are done provided K > 2K and

corz, 2V C|f

BZmaX{B,ALCN'\f

Cs+2} . O

Finally, a similar approach will give the joint analyticity of the DNO in the lower
field.

THEOREM 6.3. Given any integer s > 0, if f € C*T2([0,d]) and Wy, €
H*+3/2([0,d]) such that

HWn7mHH5+3/2 < KwB{,LVD%
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for constants Ky, Bw,Dw >0, then Jy, m, € Hs+1/2([0,d]) and
(6.4) || o172 < KB D™

for constants K.B,D>0.

Remark 6.4. For the parametric, (,0), analyticity we investigate in this paper,
the smoothness we assume of the interface, f(x) € C*T2 s> 0, is sufficient to justify
the transformation (5.1) and all of the steps we have taken. We note that our TFE
approach equivalently states the DNO in terms of the transformed field, «’ (rather
than u), thereby delivering the analyticity result (Theorem 6.2). However, this is not
the only result one could ponder. For instance, an interesting query is the (joint)
smoothness of the DNO with respect to parameters and spatial variable, z. For
instance, based upon our results in [58], we expect that mandating that f be analytic
would deliver spatial analyticity of the DNO. Additionally, one could investigate the
smoothness of the untransformed field, u, which would require the inversion of (5.1)
and an accounting of its regularity. We leave these fascinating and important follow-
up questions for future work.
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