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Abstract. The scattering of linear waves by periodic structures is a crucial phenomena in many
branches of applied physics and engineering. In this paper we establish rigorous analytic results nec-
essary for the proper numerical analysis of a class of high-order perturbation of surfaces/asymptotic
waveform evaluation (HOPS/AWE) methods for numerically simulating scattering returns from pe-
riodic diffraction gratings. More specifically, we prove a theorem on existence and uniqueness of
solutions to a system of partial differential equations which model the interaction of linear waves
with a periodic two-layer structure. Furthermore, we establish joint analyticity of these solutions
with respect to both geometry and frequency perturbations. This result provides hypotheses un-
der which a rigorous numerical analysis could be conducted on our recently developed HOPS/AWE
algorithm.
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Helmholtz equation, diffraction gratings

MSC codes. 65N35, 78A45, 78B22

DOI. 10.1137/22M1477568

1. Introduction. The scattering of linear waves by periodic structures is a cen-
tral model in many problems of scientific and engineering interest. Examples arise in
areas such as geophysics [8, 67], imaging [51], materials science [28], nanoplasmonics
[24, 47, 64], and oceanography [10]. In the case of nanoplasmonics there are many
such topics, for instance, extraordinary optical transmission [23], surface enhanced
spectroscopy [50], and surface plasmon resonance (SPR) biosensing [31, 33, 35, 45].
In all of these physical problems it is necessary to approximate scattering returns in
a fast, robust, and highly accurate fashion.

The most popular approaches to solving these problems numerically in the engi-
neering literature are volumetric methods. These include formulations based on the
finite difference [43], finite element [34], discontinuous Galerkin [30], spectral element
[20], and spectral methods [9, 29, 66]. However, these methods suffer from the re-
quirement that they discretize the full volume of the problem domain which results in
an unnecessarily large number of degrees of freedom for a periodic layered structure.
There is also the additional difficulty of approximating far-field boundary conditions
explicitly [7].

For these reasons, surface methods are an appealing alternative, and we advocate
the use of boundary integral methods (BIM) [17, 40, 65] or high-order perturbation
of surfaces (HOPS) methods [11, 12, 13, 48, 49, 57, 59]. Regarding the latter, we
mention the classical methods of operator expansions [48, 49] and field expansions [11,
12, 13], as well as the stabilized method of transformed field expansions [57, 59]. All of
these surface methods are greatly advantaged over the volumetric algorithms discussed
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1738 MATTHEW KEHOE AND DAVID P. NICHOLLS

above primarily due to the greatly reduced number of degrees of freedom that they
require. Additionally the exact enforcement of the far-field boundary conditions is
assured for both BIM and HOPS approaches. Consequently, these approaches are a
favorable alternative and are becoming more widely used by practitioners.

There has been a large amount of not only rigorous analysis of systems of partial
differential equations which model these scattering phenomena but also careful design
of numerical schemes to simulate solutions of these. Most of these results utilize either
integral equation techniques or weak formulations of the volumetric problem, each of
which lead to a variety of natural numerical implementations. We recommend the
Habilitationsschrift of Arens [3] as a definitive reference for periodic layered media
problems in two and three dimensions. In particular, we refer the interested reader
to Chapter 1 which discusses in great detail the state of the art in uniqueness and
existence results for scattering problems on biperiodic structures. For the two dimen-
sional problem we further refer the reader to the work of Petit [62]; Bao, Cowsar, and
Masters [5]; and Wilcox [68]. In three dimensions, results on the Helmholtz equation
can be found in Abboud and Nedelec [1]; Bao [4]; Bao, Dobson, and Cox [6]; and
Dobson [22]. In the context of Maxwell's equations, we point out the work of Chen
and Friedman [16] and Dobson and Friedman [21]. Of course the field has progressed
from these classical contributions in a number of directions, and survey volumes like
[5] give further details.

The previous work most closely related to the current contribution is that of
Kirsch [38] on smoothness properties of the pressure field scattered by an acoustically
soft two-dimensional periodic surface. More specifically, it was demonstrated that
not only is this field continuous and differentiable with respect to a sufficiently small
boundary deformation, but it is also analytic with respect to illumination frequency
and angle of incidence, up to poles induced by the Rayleigh singularities (Wood anom-
alies) which does not violate our theory. We generalize these results in a number of
important ways. In addition, in contrast to their rather theoretical operator-theoretic
approach using results from Kato's classical work [36], our method of proof is quite
explicit and results in a stable and highly accurate numerical scheme which we discuss
in [37].

Oftentimes in applications it is important to consider families of gratings interro-
gated over a range of illumination frequencies. An example of this is the computation
of the reflectivity map, R, which records the energy scattered by a layered structure
with interface shaped by z = g(x) and illuminated by radiation of frequency \omega (see,
e.g., [42]). Taking the point of view that this configuration is simply one in a family
with interface

z = \varepsilon f(x), \varepsilon \in R,

illuminated by radiation of frequency

\omega = \omega + \delta \omega , \delta \in R,

where \omega is a distinguished frequency of interest, our novel HOPS/asymptotic wave-
form evaluation (HOPS/AWE) method [37, 53] is a compelling numerical algorithm.
In short, this scheme studies a joint Taylor expansion of the solutions of the scattering
problem in both \varepsilon and \delta . Upon insertion of this expansion into relevant governing
equations, the resulting recursions can be solved up to a prescribed number of Taylor
orders once and then simply summed for (\varepsilon , \delta ) many times. Clearly, this is a most ef-
ficient and accurate method for approximating R=R(\varepsilon , \delta ), as we have demonstrated
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JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1739

in our previous work [37, 53], provided that this joint expansion can be justified.
The point of the current contribution is to provide this justification in the language
of rigorous analysis (see Theorem 4.7). Not only is this of intrinsic interest, but it
also provides hypotheses and estimates as the starting point for a rigorous numeri-
cal analysis of our HOPS/AWE scheme (see, e.g., [60] for a possible path) for this
problem.

We begin this program by assuming that \varepsilon and \delta are sufficiently small. However,
we have demonstrated in [58, 61] for a closely related problem concerning Laplace's
equation, the domain of analyticity in \varepsilon is not merely a small disc centered at the
origin in the complex plane but rather a neighborhood of the entire real axis. We
suspect that an analogous analysis can be conducted in the current setting, and we
intend to pursue this in future work. By contrast, as pointed out in [38], the domain
of analyticity in \delta is bounded by the presence of the Rayleigh singularities. We believe
that a similar analysis may prove fruitful in verifying that the domain of analyticity
can be extended right up to this limit which is supported by our numerics [37].

The paper is organized as follows: In section 2 we summarize the equations which
govern the propagation of linear waves in a two-dimensional periodic structure, and
in section 2.1 we discuss how the outgoing wave conditions can be exactly enforced
through the use of transparent boundary conditions. Then in section 3 we restate our
governing equations in terms of interfacial quantities via a nonoverlapping domain
decomposition phrased in terms of Dirichlet--Neumann operators (DNOs). In section
4 we discuss our analyticity result with a general theory in section 4.1 and our spe-
cific result in section 4.2. This requires a study of analyticity of the data in section
4.3 and an investigation of the flat-interface situation in section 4.4. We conclude
with the final piece required for the general theory: The analyticity of DNOs (section
6). We accomplish this by first establishing analyticity of the underlying fields (sec-
tion 5) requiring a special change of variables specified in section 5.1. With this we
demonstrate the analyticity of the scattered field in sections 5.2 and 5.3. Given these
theorems, we prove the analyticity of the DNOs in section 6.

2. The governing equations. An example of the geometry we consider is dis-
played in Figure 1: a y-invariant, doubly layered structure with a periodic interface
separating the two materials. The interface is specified by the graph of the function
z = g(x) which is d-periodic so that g(x+d) = g(x). Dielectrics occupy both domains
where an insulator (with refractive index nu) fills the region above the graph z = g(x)

S(u) := \{ z > g(x)\} ,
and a second material (with index of refraction nw) occupies

S(w) := \{ z < g(x)\} .
The superscripts are chosen to conform to the notation of the authors in previous
work [52, 55]. The structure is illuminated from above by monochromatic plane-wave
incident radiation of frequency \omega and wavenumber ku = nu\omega /c0 = \omega /cu (c0 is the
speed of light) aligned with the grooves

Ei(x, z, t) =Ae - i\omega t+i\alpha x - i\gamma 
uz, Hi(x, z, t) =Be - i\omega t+i\alpha x - i\gamma 

uz,

\alpha := ku sin(\theta ), \gamma u := ku cos(\theta ).

We consider the reduced incident fields

Ei(x, z) = ei\omega tEi(x, z, t), Hi(x, z) = ei\omega tHi(x, z, t),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1740 MATTHEW KEHOE AND DAVID P. NICHOLLS
4 MATTHEW KEHOE AND DAVID NICHOLLS

Fig. 1. A two-layer structure with a periodic interface, z = g(x), separating two material
layers, S(u) and S(w), illuminated by plane--wave incidence.

where the time dependence exp( - i\omega t) has been factored out. As shown in [62],
the reduced electric and magnetic fields, like the reduced scattered fields, are \alpha --
quasiperiodic due to the incident radiation. To close the problem, we specify that
the scattered radiation is ``outgoing,"" upward propagating in S(u) and downward
propagating in S(w).

It is well known (see, e.g., Petit [62]) that in this two--dimensional setting, the
time--harmonic Maxwell equations decouple into two scalar Helmholtz problems which
govern the Transverse Electric (TE) and Transverse Magnetic (TM) polarizations.
We define the invariant (y) direction of the scattered (electric or magnetic) field by
\~u = \~u(x, z) and \~w = \~w(x, z) in S(u) and S(w), respectively. The incident radiation in
the upper field is denoted by \~ui(x, z).

Following our previous work [53] we further factor out the phase exp(i\alpha x) from
the fields \~u and \~w

u(x, z) = e - i\alpha x\~u(x, z), w(x, z) = e - i\alpha x \~w(x, z),

which, we note, are d--periodic. In light of all of this, we are led to seek outgoing,
d--periodic solutions of

\Delta u+ 2i\alpha \partial xu+ (\gamma u)2u = 0, z > g(x),(2.1a)

\Delta w + 2i\alpha \partial xw + (\gamma w)2w = 0, z < g(x),(2.1b)

u - w = \zeta , z = g(x),(2.1c)

\partial Nu - i\alpha (\partial xg)u - \tau 2 [\partial Nw  - i\alpha (\partial xg)w] = \psi , z = g(x),(2.1d)

Fig 1. A two-layer structure with a periodic interface, z = g(x), separating two material layers,
S(u) and S(w), illuminated by plane-wave incidence.

where the time dependence exp( - i\omega t) has been factored out. As shown in [62],
the reduced electric and magnetic fields, like the reduced scattered fields, are \alpha -
quasiperiodic due to the incident radiation. To close the problem, we specify that
the scattered radiation is ``outgoing,"" upward propagating in S(u) and downward
propagating in S(w).

It is well known (see, e.g., Petit [62]) that in this two-dimensional setting, the
time-harmonic Maxwell equations decouple into two scalar Helmholtz problems which
govern the transverse electric (TE) and transverse magnetic (TM) polarizations. We
define the invariant (y) direction of the scattered (electric or magnetic) field by \~u =
\~u(x, z) and \~w = \~w(x, z) in S(u) and S(w), respectively. The incident radiation in the
upper field is denoted by \~ui(x, z).

Following our previous work [53] we further factor out the phase exp(i\alpha x) from
the fields \~u and \~w

u(x, z) = e - i\alpha x\~u(x, z), w(x, z) = e - i\alpha x \~w(x, z),

which, we note, are d-periodic. In light of all of this, we are led to seek outgoing,
d-periodic solutions of

\Delta u+ 2i\alpha \partial xu+ (\gamma u)2u= 0, z > g(x),(2.1a)

\Delta w+ 2i\alpha \partial xw+ (\gamma w)2w= 0, z < g(x),(2.1b)

u - w= \zeta , z = g(x),(2.1c)

\partial Nu - i\alpha (\partial xg)u - \tau 2 [\partial Nw - i\alpha (\partial xg)w] =\psi , z = g(x),(2.1d)

where N := ( - \partial xg,1)T . The Dirichlet and Neumann data are

\zeta (x) := - e - i\gamma ug(x),(2.1e)

\psi (x) := (i\gamma u + i\alpha (\partial xg))e
 - i\gamma ug(x),(2.1f)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1741

and

\tau 2 =

\Biggl\{ 
1, TE,

(ku/kw)2 = (nu/nw)2, TM,

where kw = nw\omega /c0 = \omega /cw and \gamma w = kw cos(\theta ).

2.1. Transparent boundary conditions. The Rayleigh expansions, which are
derived through separation of variables [62], are the periodic, upward/downward prop-
agating solutions of (2.1a) and (2.1b). In order to truncate the bi-infinite problem
domain to one of finite size we use these to define transparent boundary conditions.
For this we choose values a and b such that

a> | g| \infty ,  - b < - | g| \infty ,

and define the artificial boundaries \{ z = a\} and \{ z =  - b\} . In \{ z > a\} the Rayleigh
expansions tell us that upward propagating solutions of (2.1a) are

(2.2) u(x, z) =

\infty \sum 
p= - \infty 

\^ape
i\~px+i\gamma u

p z,

while downward propagating solutions of (2.1b) in \{ z < - b\} can be expressed as

w(x, z) =

\infty \sum 
p= - \infty 

\^dpe
i\~px - i\gamma w

p z,

where, for p\in Z and q \in \{ u,w\} ,

(2.3) \~p :=
2\pi p

d
, \alpha p := \alpha + \~p, \gamma qp :=

\left\{   
\sqrt{} 
(kq)2  - \alpha 2

p, p\in \scrU q,
i
\sqrt{} 
\alpha 2
p  - (kq)2, p \not \in \scrU q,

and

\scrU q := \{ p\in Z | \alpha 2
p < (kq)2\} ,

which are the propagating modes in the upper and lower layers. With these we can
define the transparent boundary conditions in the following way: We first rewrite
(2.2) as

u(x, z) =

\infty \sum 
p= - \infty 

\Bigl( 
\^ape

i\gamma u
p a
\Bigr) 
ei\~px+i\gamma 

u
p (z - a) =

\infty \sum 
p= - \infty 

\^\xi pe
i\~px+i\gamma u

p (z - a),

and observe that

u(x,a) =

\infty \sum 
p= - \infty 

\^\xi pe
i\~px =: \xi (x),

and

\partial zu(x,a) =

\infty \sum 
p= - \infty 

(i\gamma up )
\^\xi pe

i\~px =: Tu[\xi (x)],

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1742 MATTHEW KEHOE AND DAVID P. NICHOLLS

which defines the order-one Fourier multiplier Tu. From this we state that upward-
propagating solutions of (2.1a) satisfy the transparent boundary condition at z = a

(2.4) \partial zu(x,a) - Tu[u(x,a)] = 0, z = a.

A similar calculation leads to the transparent boundary condition at z = - b
(2.5) \partial zw(x, - b) - Tw[w(x, - b)] = 0, z = - b,
where

Tw[\psi (x)] :=

\infty \sum 
p= - \infty 

( - i\gamma wp ) \^\psi pei\~px.

We note that these conditions enforce the upward and downward propagating condi-
tions described by Arens [3].

With these we now state the full set of governing equations as

\Delta u+ 2i\alpha \partial xu+ (\gamma u)2u= 0, z > g(x),(2.6a)

\Delta w+ 2i\alpha \partial xw+ (\gamma w)2w= 0, z < g(x),(2.6b)

u - w= \zeta , z = g(x),(2.6c)

\partial Nu - i\alpha (\partial xg)u - \tau 2 [\partial Nw - i\alpha (\partial xg)w] =\psi , z = g(x),(2.6d)

\partial zu(x,a) - Tu[u(x,a)] = 0, z = a,(2.6e)

\partial zw(x, - b) - Tw[w(x, - b)] = 0, z = - b,(2.6f)

u(x+ d, z) = u(x, z),(2.6g)

w(x+ d, z) =w(x, z).(2.6h)

3. A nonoverlapping domain decomposition method. We now rewrite our
governing equations (2.6) in terms of surface quantities via a nonoverlapping domain
decomposition method [18, 19, 46]. For this we define

U(x) := u(x, g(x)), \~U(x) := - \partial Nu(x, g(x)),
W (x) :=w(x, g(x)), \~W (x) := \partial Nw(x, g(x)),

where u is a d-periodic solution of (2.6a) and (2.6e), and w is a d-periodic solution of
(2.6b) and (2.6f). In terms of these, our full governing equations (2.6) are equivalent
to the pair of boundary conditions, (2.6c) and (2.6d),

U  - W = \zeta ,(3.1a)

 - \~U  - (i\alpha )(\partial xg)U  - \tau 2
\Bigl[ 
\~W  - (i\alpha )(\partial xg)W

\Bigr] 
=\psi .(3.1b)

This set of two equations and four unknowns can be closed by noting that the pairs
\{ U, \~U\} and \{ W, \~W\} are connected, e.g., by DNOs, which [59] showed are well-defined
under the hypotheses presently listed.

Definition 3.1. Given an integer s\geq 0, if g \in Cs+2, then the unique solution of

\Delta u+ 2i\alpha \partial xu+ (\gamma u)2u= 0, z > g(x),(3.2a)

u=U, z = g(x),(3.2b)

\partial zu(x,a) - Tu[u(x,a)] = 0, z = a,(3.2c)

u(x+ d, z) = u(x, z),(3.2d)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1743

defines the upper layer DNO

(3.3) G :U \rightarrow \~U.

Definition 3.2. Given an integer s\geq 0, if g \in Cs+2, then the unique solution of

\Delta w+ 2i\alpha \partial xw+ (\gamma w)2w= 0, z < g(x),(3.4a)

w=W, z = g(x),(3.4b)

\partial zw(x, - b) - Tw[w(x, - b)] = 0, z = - b,(3.4c)

w(x+ d, z) =w(x, z).(3.4d)

defines the lower layer DNO

(3.5) J :W \rightarrow \~W.

The interfacial reformulation of our governing equations (3.1) now becomes

(3.6) AV=R,

where

(3.7) A=

\biggl( 
I  - I

G+ (\partial xg)(i\alpha ) \tau 2J  - \tau 2(\partial xg)(i\alpha )

\biggr) 
, V=

\biggl( 
U
W

\biggr) 
, R=

\biggl( 
\zeta 
 - \psi 

\biggr) 
.

4. Joint analyticity of solutions. There are many possible ways to analyze
(3.6) rigorously. Following our recent work [37], we select a jointly perturbative ap-
proach based on two assumptions:

1. Boundary perturbation: g(x) = \varepsilon f(x), \varepsilon \in R,
2. Frequency perturbation: \omega = (1+ \delta )\omega = \omega + \delta \omega , \delta \in R.

Remark 4.1. At inception one typically assumes that these perturbation parame-
ters, \varepsilon and \delta , are quite small, and we can certainly begin there. However, we will show
that these only need be sufficiently small (e.g., characterized by the C2 norm of f for
the domain of analyticity in \varepsilon ) but not necessarily tiny. Furthermore, following the
methods devised in [58, 61] for the related problem of analytic continuation of DNOs
associated to Laplace's equation, we fully expect that the neighborhood of analyticity
in \varepsilon contains the entire real axis. Beyond this we note that the domain of analyticity
in \delta is bounded by the Rayleigh singularities as discussed in [38]. However, it is possi-
ble that an extension of the approach in [58, 61] may deliver a rigorous justification of
our numerical observations in [37] that the region of analyticity in \delta extends right up
to the limit imposed by the Rayleigh singularities. Verifying each of these predictions
is a goal of current research by the authors.

The frequency perturbation has the following important consequences:

kq = \omega /cq = (1+ \delta )\omega /cq =: (1 + \delta )kq = kq + \delta kq, q \in \{ u,w\} ,
\alpha = ku sin(\theta ) = (1 + \delta )ku sin(\theta ) =: (1 + \delta )\alpha = \alpha + \delta \alpha ,

\gamma q = kq cos(\theta ) = (1 + \delta )kq cos(\theta ) =: (1 + \delta )\gamma q = \gamma q + \delta \gamma q, q \in \{ u,w\} .

This, in turn, delivers

\alpha p = \alpha + \~p= \alpha + \delta \alpha + \~p=: \alpha p + \delta \alpha .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1744 MATTHEW KEHOE AND DAVID P. NICHOLLS

We now pursue this perturbative approach to establish the existence, uniqueness,
and analyticity of solutions to (3.6). To accomplish this we will presently show the
joint analytic dependence of A = A(\varepsilon , \delta ) and R = R(\varepsilon , \delta ) upon \varepsilon and \delta and then
appeal to the regular perturbation theory for linear systems of equations outlined in
[54] to discover the analyticity of the unique solution V=V(\varepsilon , \delta ). More precisely, we
view (3.6) as

A(\varepsilon , \delta )V(\varepsilon , \delta ) =R(\varepsilon , \delta ),

establish the analyticity of A and R so that

(4.1) \{ A,R\} (\varepsilon , \delta ) =
\infty \sum 
n=0

\infty \sum 
m=0

\{ An,m,Rn,m\} \varepsilon n\delta m,

and seek a solution of the form

(4.2) V(\varepsilon , \delta ) =

\infty \sum 
n=0

\infty \sum 
m=0

Vn,m\varepsilon 
n\delta m,

which we will show converges in a function space. To pursue this we insert (4.2) and
(4.1) into (3.6) and find, at each perturbation order (n,m), that we must solve

A0,0Vn,m =Rn,m  - 
n - 1\sum 
\ell =0

An - \ell ,0V\ell ,m  - 
m - 1\sum 
r=0

A0,m - rVn,r

 - 
n - 1\sum 
\ell =0

m - 1\sum 
r=0

An - \ell ,m - rV\ell ,r.(4.3)

A brief inspection of the formulas for A and R, (3.7), reveals that

A0,0 =

\biggl( 
I  - I

G0,0 \tau 2J0,0

\biggr) 
,(4.4a)

An,m =

\biggl( 
0 0

Gn,m \tau 2Jn,m

\biggr) 
+ \delta n,1 \{ 1 + \delta m,1\} (\partial xf)(i\alpha )

\biggl( 
0 0
1  - \tau 2

\biggr) 
, n \not = 0 or m \not = 0,(4.4b)

Rn,m =

\biggl( 
\zeta n,m
 - \psi n,m

\biggr) 
,(4.4c)

where \delta n,m is the Kronecker delta function. Formulas for the terms \{ \zeta n,m,\psi n,m\} can
be found in [37] or by using the recursions described in section 4.3. The terms Gn,m
and Jn,m are the (n,m)th corrections of the DNOs G and J , respectively, in a Taylor
series expansion of each jointly in \varepsilon and \delta . This is explained in section 6, together
with precise estimates of the coefficients, Gn,m and Jn,m, in the appropriate Sobolev
spaces. Finally, in section 4.4 we utilize expressions for the flat-interface DNOs, G0,0

and J0,0, to investigate the mapping properties of the linearized operator, A0,0, and
its inverse.

4.1. A general analyticity theory. Given these estimates, existence, unique-
ness, and analyticity of solutions can be deduced in a rather straightforward fashion
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JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1745

using the following result from one of the authors' previous papers [54, Theorem 3.2].
This result uses multi-index notation [25], in particular

\~\varepsilon :=

\left(   \varepsilon 1
...
\varepsilon M

\right)   , \~n :=

\left(   n1
...
nM

\right)   ,

and the convention

\infty \sum 
\~n=0

A\~n \~\varepsilon \~n =

\infty \sum 
n1=0

\cdot \cdot \cdot 
\infty \sum 

nM=0

An1,...,nM
\varepsilon n1
1 \cdot \cdot \cdot \varepsilon nM

M .

Theorem 4.2. Given two Banach spaces, \~X and \~Y , suppose that
1. R\~n \in \~Y for all \~n \geq 0, and there exist M--multi-indexed constants \~CR > 0,

\~BR > 0,

\~CR =

\left(   CR,1
...

CR,M

\right)   , \~B\~n
R =

\left(   Bn1

R,1
...

BnM

R,M

\right)   ,

such that

\| R\~n\| \~Y \leq \~CR \~B\~n
R,

2. A\~n : \~X\rightarrow \~Y for all \~n\geq 0, and there exist M--multi-indexed constants \~CA > 0,
\~BA > 0 such that

\| A\~n\| \~X\rightarrow \~Y \leq \~CA \~B\~n
A,

3. A - 1
0 : \~Y \rightarrow \~X, and there exists a constant Ce > 0 such that\bigm\| \bigm\| A - 1

0

\bigm\| \bigm\| 
\~Y\rightarrow \~X

\leq Ce.

Then the equation (3.6) has a unique solution,

(4.5) V(\~\varepsilon ) =

\infty \sum 
\~n=0

V\~n\~\varepsilon 
\~n,

and there exist M--multi-indexed constants \~CV > 0 and \~BV > 0 such that

\| V\~n\| \~X \leq \~CV \~B\~n
V

for all \~n\geq 0 and any

\~CV \geq 2Ce \~CR, \~BV \geq max
\Bigl\{ 
\~BR,2 \~BA,4Ce \~CA \~BA

\Bigr\} 
,

enforced componentwise. This implies that, for any M--multi-indexed constant 0 \leq 
\~\rho < 1, (4.5), converges for all \~\varepsilon such that B\~\varepsilon < \~\rho , i.e., \~\varepsilon < \~\rho /B.

Remark 4.3. In the current context we will use this result in the case M = 2 and

\~\varepsilon =

\biggl( 
\varepsilon 
\delta 

\biggr) 
, \~n=

\biggl( 
n
m

\biggr) 
, \~\rho =

\biggl( 
\rho 
\sigma 

\biggr) 
.
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1746 MATTHEW KEHOE AND DAVID P. NICHOLLS

4.2. Analyticity of solutions to the two-layer problem. To state our theo-
rem precisely we briefly define and recall classical properties of the L2--based Sobolev
spaces, Hs, of laterally periodic functions [40]. We know that any d-periodic L2

function can be expressed in a Fourier series as [40]

\mu (x) =

\infty \sum 
p= - \infty 

\^\mu pe
i\~px, \^\mu p =

1

d

\int d

0

\mu (x)e - i\~pxdx,

We define the symbol \langle \~p\rangle 2 := 1+ | \~p| 2 so that laterally periodic norms for surface and
volumetric functions are defined by

\| \mu \| 2Hs :=

\infty \sum 
p= - \infty 

\langle \~p\rangle 2s | \^\mu p| 2 ,

and

\| u\| 2Hs :=

s\sum 
\ell =0

\infty \sum 
p= - \infty 

\langle \~p\rangle 2(s - \ell )
\int a

0

| \^up(z)| 2 dz =
s\sum 
\ell =0

\infty \sum 
p= - \infty 

\langle \~p\rangle 2(s - \ell ) \| \^up\| 2L2(0,a) ,

respectively. With these we define the laterally d-periodic Sobolev spaces Hs as the
L2 functions for which \| \cdot \| Hs is finite. For our present use we define the vector-valued
spaces for s\geq 0

Xs :=

\biggl\{ 
V=

\biggl( 
U
W

\biggr) \bigm| \bigm| \bigm| \bigm| U,W \in Hs+3/2([0, d])

\biggr\} 
,

and

Y s :=

\biggl\{ 
R=

\biggl( 
\zeta 
 - \psi 

\biggr) \bigm| \bigm| \bigm| \bigm| \zeta \in Hs+3/2([0, d]),\psi \in Hs+1/2([0, d])

\biggr\} 
.

These have the norms

\| V\| 2Xs =

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( UW
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2

Xs

:= \| U\| 2Hs+3/2 + \| W\| 2Hs+3/2 ,

\| R\| 2Y s =

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( \zeta 
 - \psi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
Y s

:= \| \zeta \| 2Hs+3/2 + \| \psi \| 2Hs+1/2 .

In addition to these function spaces we also require the following three results from
the classical theory of Sobolev spaces [2, 44] and elliptic partial differential equations
[25--27, 41]. (See also [32, 56] in the context of HOPS methods.)

Lemma 4.4. Given an integer s \geq 0 and any \eta > 0, there exists a constant
\scrM =\scrM (s) such that if f \in Cs([0, d]) and u\in Hs([0, d]\times [0, a]), then

(4.6) \| fu\| Hs \leq \scrM | f | Cs \| u\| Hs ,

and if \~f \in Cs+1/2+\eta ([0, d]) and \~u\in Hs+1/2([0, d]), then

(4.7)
\bigm\| \bigm\| \bigm\| \~f \~u\bigm\| \bigm\| \bigm\| 

Hs+1/2
\leq \scrM 

\bigm| \bigm| \bigm| \~f \bigm| \bigm| \bigm| 
Cs+1/2+\eta 

\| \~u\| Hs+1/2 .
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JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1747

Theorem 4.5. Given an integer s \geq 0, if F \in Hs([0, d]) \times [0, a]), U \in 
Hs+3/2([0, d]), P \in Hs+1/2([0, d]), then the unique solution of

\Delta u(x, z) + 2i\alpha \partial xu(x, z) + (\gamma u)2u(x, z) = F (x, z), 0< z < a,

u(x,0) =U(x,0), z = 0,

\partial zu(x,a) - Tu0 [u(x,a)] = P (x), z = a,

u(x+ d, z) = u(x, z),

satisfies

(4.8) \| u\| Hs+2 \leq Ce \{ \| F\| Hs + \| U\| Hs+3/2 + \| P\| Hs+1/2\} 

for some constant Ce > 0, where Tu0 = i\gamma u
D

corresponds to the \delta = 0 scenario.

Lemma 4.6. Given an integer s \geq 0, if F \in Hs([0, d])\times [0, a]), then (a - z)F \in 
Hs([0, d])\times [0, a]), and there exists a positive constant Za =Za(s) such that

\| (a - z)F\| Hs \leq Za \| F\| Hs .

We now state our main result.

Theorem 4.7. Given an integer s \geq 0, if f \in Cs+2([0, d]), then (3.6) has a
unique solution, (4.2). Furthermore, there exist constants B,C,D > 0 such that

\| Vn,m\| Xs \leq CBnDm

for all n,m\geq 0. This implies that for any 0\leq \rho ,\sigma < 1, (4.2) converges for all \varepsilon such
that B\varepsilon < \rho , i.e., \varepsilon < \rho /B and all \delta such that D\delta < \sigma , i.e., \delta < \sigma /D.

Proof. As mentioned above, our strategy is to invoke Theorem 4.2, and thus we
must verify its hypotheses. To begin, we consider the spaces

\~X =Xs, \~Y = Y s.

In section 4.3 we will show that the vector Rn,m, consisting of \zeta n,m and \psi n,m, is
bounded in Y s for any s \geq 0 provided that f \in Cs+2([0, d]). (This implies that the
Rn,m satisfies the estimates of item 1 in Theorem 4.2.)

Then in section 6 we show that the operators Gn,m and Jn,m in the Taylor series
expansions of the DNOs satisfy appropriate bounds provided that f \in Cs+2([0, d]).
With this, it is clear that the An,m satisfy the estimates of item 2 in Theorem 4.2.

Finally, in section 4.4 we show that the estimates and mapping properties of A - 1
0,0

for item 3 in Theorem 4.2 hold.

4.3. Analyticity of the surface data. To establish the analyticity of the
Dirichlet and Neumann data obeying suitable estimates, we begin by defining

\scrE (x;\varepsilon , \delta ) := e - i(1+\delta )\gamma 
u\varepsilon f(x),

and note that we can write (2.1e) and (2.1f) as

\zeta (x) = \zeta (x;\varepsilon , \delta ) = - \scrE (x;\varepsilon , \delta ),
\psi (x) =\psi (x;\varepsilon , \delta ) =

\bigl\{ 
i(1 + \delta )\gamma u + i(1 + \delta )\alpha (\varepsilon \partial xf)

\bigr\} 
\scrE (x;\varepsilon , \delta ).

We will now demonstrate that the function \scrE is jointly analytic in \varepsilon and \delta and subject
to appropriate estimates, which clearly demonstrates the joint analytic dependence of
the data, \zeta (x;\varepsilon , \delta ) and \psi (x;\varepsilon , \delta ).
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1748 MATTHEW KEHOE AND DAVID P. NICHOLLS

Lemma 4.8. Given any integer s \geq 0, if f \in Cs+2([0, d]), then the function
\scrE (x;\varepsilon , \delta ) is jointly analytic in \varepsilon and \delta . Therefore

(4.9) \scrE (x;\varepsilon , \delta ) =
\infty \sum 
n=0

\infty \sum 
m=0

\scrE n,m(x)\varepsilon n\delta m,

and, for constants C\scrE ,B\scrE ,D\scrE > 0,

(4.10) \| \scrE n,m\| Hs+3/2 \leq C\scrE B
n
\scrE D

m
\scrE 

for all n,m\geq 0.

Proof. We begin by observing the classical fact that the composition of jointly
(real) analytic functions is also jointly (real) analytic [39] so that (4.9) holds and move
to expressions and estimates for the \scrE n,m. By evaluating at \varepsilon = 0 we find that

\scrE (x; 0, \delta ) = 1,

so that

\scrE 0,m(x) =

\Biggl\{ 
1, m= 0,

0, m> 0.

For \varepsilon > 0 we use the straightforward computation

\partial \varepsilon \scrE =
\bigl\{ 
 - i(1 + \delta )\gamma uf

\bigr\} 
\scrE ,

and the expansion (4.9) to learn that, for m= 0,

(4.11) \scrE n+1,0 =

\biggl(  - i\gamma uf
n+ 1

\biggr) 
\scrE n,0,

and, for m> 0,

(4.12) \scrE n+1,m =

\biggl(  - i\gamma uf
n+ 1

\biggr) 
\{ \scrE n,m + \scrE n,m - 1\} .

We work by induction in n and begin by establishing (4.10) at n= 0 for all m\geq 0.
This is immediate as

\| \scrE 0,0\| Hs+3/2 = 1, \| \scrE 0,m\| Hs+3/2 = 0.

We now assume (4.10) for all n < \=n and all m\geq 0 and seek this estimate in the case
n= \=n and all m\geq 0. For this we conduct another induction on m, and for m= 0 we
use (4.11) (together with Lemma 4.4 with \~s= s+ 1) to discover

\| \scrE \=n,0\| Hs+3/2 \leq \scrM 
\Biggl( \bigm| \bigm| \gamma u\bigm| \bigm| | f | Cs+3/2+\eta 

\=n

\Biggr) 
\| \scrE \=n - 1,0\| Hs+3/2

\leq \scrM 
\Biggl( \bigm| \bigm| \gamma u\bigm| \bigm| | f | Cs+2

\=n

\Biggr) 
C\scrE B

\=n - 1
\scrE \leq C\scrE B

\=n
\scrE ,

provided that

B\scrE \geq \scrM 
\bigm| \bigm| \gamma u\bigm| \bigm| | f | Cs+2 \geq \scrM 

\Biggl( \bigm| \bigm| \gamma u\bigm| \bigm| | f | Cs+2

\=n

\Biggr) 
.
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JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1749

Finally, we assume the estimate (4.10) for n= \=n and m< \=m, and use (4.12) to learn
that

\| \scrE \=n, \=m\| Hs+3/2 \leq \scrM 
\Biggl( \bigm| \bigm| \gamma u\bigm| \bigm| | f | Cs+3/2+\eta 

\=n

\Biggr) \bigl\{ 
\| \scrE \=n - 1, \=m\| Hs+3/2 + \| \scrE \=n - 1, \=m - 1\| Hs+3/2

\bigr\} 
\leq \scrM 

\Biggl( \bigm| \bigm| \gamma u\bigm| \bigm| | f | Cs+2

\=n

\Biggr) 
C\scrE 
\bigl\{ 
B\=n - 1

\scrE D \=m
\scrE +B\=n - 1

\scrE D \=m - 1
\scrE 

\bigr\} 
\leq C\scrE B

\=n
\scrE D

\=m
\scrE ,

provided that

\scrM 
\Biggl( \bigm| \bigm| \gamma u\bigm| \bigm| | f | Cs+2

\=n

\Biggr) 
\leq B\scrE 

2
, \scrM 

\Biggl( \bigm| \bigm| \gamma u\bigm| \bigm| | f | Cs+2

\=n

\Biggr) 
\leq B\scrE D\scrE 

2
,

which can be accomplished, e.g., with

B\scrE \geq 2\scrM 
\bigm| \bigm| \gamma u\bigm| \bigm| | f | Cs+2 \geq 2\scrM 

\Biggl( \bigm| \bigm| \gamma u\bigm| \bigm| | f | Cs+2

\=n

\Biggr) 
, D\scrE \geq 1,

and we are done.

With Lemma 4.8 it is straightforward to prove the following analyticity result for
the Dirichlet and Neumann data.

Lemma 4.9. Given any integer s \geq 0, if f \in Cs+2([0, d]), then the functions
\zeta (x;\varepsilon , \delta ) and \psi (x;\varepsilon , \delta ) are jointly analytic in \varepsilon and \delta . Therefore

(4.13) \{ \zeta ,\psi \} (x;\varepsilon , \delta ) =
\infty \sum 
n=0

\infty \sum 
m=0

\{ \zeta n,m,\psi n,m\} (x)\varepsilon n\delta m

and, for constants C\zeta ,B\zeta ,D\zeta > 0, and C\psi ,B\psi ,D\psi > 0,

(4.14) \| \zeta n,m\| Hs+3/2 \leq C\zeta B
n
\zeta D

m
\zeta , \| \psi n,m\| Hs+1/2 \leq C\psi B

n
\psi D

m
\psi 

for all n,m\geq 0.

4.4. Invertibility of the flat-interface operator. The final hypothesis to be
verified in order to invoke Theorem 4.2 is the existence and mapping properties of the
linearized (flat-interface) operator A0,0. In our previous work [37] we showed that

(4.15) A0,0 =

\biggl( 
I  - I

G0,0 \tau 2J0,0

\biggr) 
,

where

(4.16) G0,0 = - i\gamma uD, J0,0 = - i\gamma wD,

are order-one Fourier multipliers defined by

(4.17) G0,0[U ] =

\infty \sum 
p= - \infty 

( - i\gamma up ) \^Upei\~px, J0,0[W ] =

\infty \sum 
p= - \infty 

( - i\gamma wp ) \^Wpe
i\~px.

Lemma 4.10. The linear operator A0,0 maps Xs to Y s boundedly, is invertible,
and its inverse maps Y s to Xs boundedly.
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1750 MATTHEW KEHOE AND DAVID P. NICHOLLS

Proof. We begin by defining the operator

\Delta :=G0,0 + \tau 2J0,0 = ( - i\gamma uD) + \tau 2( - i\gamma wD),
which has Fourier symbol

\^\Delta p = ( - i\gamma up ) + \tau 2( - i\gamma wp ),
and noting that there exist positive constants CG, CJ , and C\Delta such that\bigm| \bigm|  - i\gamma up \bigm| \bigm| \leq CG \langle \~p\rangle ,

\bigm| \bigm|  - i\gamma wp \bigm| \bigm| \leq CJ \langle \~p\rangle ,
\bigm| \bigm| \bigm| \^\Delta p

\bigm| \bigm| \bigm| \leq C\Delta \langle \~p\rangle .
Importantly, provided that nu \not = nw, it is not difficult to establish the crucial fact that
\^\Delta p \not = 0. Finally, one can also find a positive constant C\Delta  - 1 such that\bigm| \bigm| \bigm| \bigm| \bigm| 1

\^\Delta p

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C\Delta  - 1 \langle \~p\rangle  - 1
.

With this it is a simple matter to realize that \Delta  - 1 exists and that

\Delta :Hs+3/2 \rightarrow Hs+1/2, \Delta  - 1 :Hs+1/2 \rightarrow Hs+3/2.

Next, we write generic elements of Xs and Y s as

V=

\biggl( 
U
W

\biggr) 
\in Xs, R=

\biggl( 
\zeta 
 - \psi 

\biggr) 
\in Y s.

Using the definitions of the norms of Xs and Y s and the facts

2ab\leq a2 + b2, \| A+B\| 2 \leq (\| A\| + \| B\| )2,
we find that

\| A0,0V\| 2Y s = \| U  - W\| 2Hs+3/2 +
\bigm\| \bigm\| G0,0U + \tau 2J0,0W

\bigm\| \bigm\| 2
Hs+1/2

\leq 2\| U\| 2Hs+3/2 + 2\| W\| 2Hs+3/2 +C2
G \| U\| 2Hs+3/2

+\tau 2CGCJ(\| U\| 2Hs+3/2 + \| W\| 2Hs+3/2) +C2
J\tau 

4 \| W\| 2Hs+3/2

\leq max\{ 2,C2
G, \tau 

2CGCJ , \tau 
4C2

J\} 
\Bigl( 
\| U\| 2Hs+3/2 + \| W\| 2Hs+3/2

\Bigr) 
=max\{ 2,C2

G, \tau 
2CGCJ , \tau 

4C2
J\} \| V\| 2Xs ,

so that A0,0 does indeed map Xs to Y s boundedly. We define the operator

B :=\Delta  - 1

\biggl( 
\tau 2J0,0 I
 - G0,0 I

\biggr) 
,

and note that

BA0,0 =A0,0B=

\biggl( 
I 0
0 I

\biggr) 
,

so that the inverse of A0,0 exists and A - 1
0,0 =B. Furthermore, as above,\bigm\| \bigm\| A - 1

0,0R
\bigm\| \bigm\| 2
Xs

=
\bigm\| \bigm\| \Delta  - 1(\tau 2J0,0\zeta  - \psi )

\bigm\| \bigm\| 2
Hs+3/2 +

\bigm\| \bigm\| \Delta  - 1( - G0,0\zeta  - \psi )
\bigm\| \bigm\| 2
Hs+3/2

\leq C2
\Delta  - 1\tau 4C2

J \| \zeta \| 2Hs+3/2 +C2
\Delta  - 1\tau 2CJ(\| \zeta \| 2Hs+3/2 +\| \psi \| 2Hs+1/2)

+C2
\Delta  - 1C2

G \| \zeta \| 2Hs+3/2 +C2
\Delta  - 1CG(\| \zeta \| 2Hs+3/2 +\| \psi \| 2Hs+1/2)

+2C2
\Delta  - 1 \| \psi \| 2Hs+1/2

\leq C2
\Delta  - 1 max\{ 2,CG,C2

G, \tau 
2CJ , \tau 

4C2
J\} 
\Bigl( 
\| \zeta \| 2Hs+3/2 + \| \psi \| 2Hs+1/2

\Bigr) 
=C2

\Delta  - 1 max\{ 2,CG,C2
G, \tau 

2CJ , \tau 
4C2

J\} \| R\| 2Y s ,

and A - 1
0,0 maps Y s to Xs boundedly.
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JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1751

5. Analyticity of the scattered fields. At this point we establish the analyt-
icity of the fields which define the DNOs, G and J , though, for brevity, we restrict
our attention to the one in the upper layer, G, and note that the considerations for
the lower layer DNO, J , are largely the same.

5.1. Change of variables and formal expansions. For our rigorous demon-
stration we appeal to the method of transformed field expansions (TFE) [56, 59] which
begins with a domain-flattening change of variables (the \sigma -coordinates of oceanog-
raphy [63] and the C-method of the dynamical theory of gratings [14, 15]) to the
governing equations, (3.2),

(5.1) x\prime = x, z\prime = a

\biggl( 
z  - g(x)

a - g(x)

\biggr) 
.

With this we can rewrite the DNO problem, (3.2), in terms of the transformed field

u\prime (x\prime , z\prime ) := u

\biggl( 
x\prime ,

\biggl( 
a - g(x\prime )

a

\biggr) 
z\prime + g(x\prime )

\biggr) 
,

as (upon dropping primes)

\Delta u+ 2i\alpha \partial xu+ (\gamma u)2u= F (x, z), 0< z < a,(5.2a)

u(x,0) =U(x), z = 0,(5.2b)

\partial zu(x,a) - Tu[u(x,a)] = P (x), z = a,(5.2c)

u(x+ d, z) = u(x, z),(5.2d)

Tu0 = i\gamma u
D
\delta = 0 and the DNO itself, (3.3), as

(5.3) G(g)[U ] = - \partial zu(x,0) +H(x).

The forms for \{ F,P,H\} have been derived and reported in [59] and, for brevity, we
do not repeat them here.

Following our HOPS/AWE philosophy we assume the joint boundary/frequency
perturbation

g(x) = \varepsilon f(x), \omega = \omega + \delta \omega = (1+ \delta )\omega ,

and study the effect of this on (5.2) and (5.3). These become

\Delta u+ 2i\alpha \partial xu+ (\gamma u)2u= \~F (x, z), 0< z < a,(5.4a)

u(x,0) =U(x), z = 0,(5.4b)

\partial zu(x,a) - Tu0 [u(x,a)] = \~P (x), z = a,(5.4c)

u(x+ d, z) = u(x, z),(5.4d)

and

(5.5) G(\varepsilon f)[U ] = - \partial zu(x,0) + \~H(x),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

9/
23

 to
 1

31
.1

93
.1

78
.8

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1752 MATTHEW KEHOE AND DAVID P. NICHOLLS

where \~F , \~P , \~H =\scrO (\varepsilon ) +\scrO (\delta ). More specifically,

\~F = - \varepsilon div [A1(f)\nabla u] - \varepsilon 2div [A2(f)\nabla u] - \varepsilon B1(f)\nabla u - \varepsilon 2B2(f)\nabla u
 - 2i\alpha \delta \partial xu - \delta 2(\gamma u)2u - 2\delta (\gamma u)2u

 - 2i\varepsilon S1(f)\alpha \partial xu - 2i\varepsilon S1(f)\alpha \delta \partial xu - \varepsilon S1(f)\delta 
2(\gamma u)2u

 - 2\varepsilon S1(f)\delta (\gamma 
u)2u - \varepsilon S1(f)(\gamma 

u)2u

 - 2i\varepsilon 2S2(f)\alpha \partial xu - 2i\varepsilon 2S2(f)\alpha \delta \partial xu - \varepsilon 2S2(f)\delta 
2(\gamma u)2u

 - 2\varepsilon 2S2(f)\delta (\gamma 
u)2u - \varepsilon 2S2(f)(\gamma 

u)2u,(5.6)

and

(5.7) \~P = - 1

a
(\varepsilon f(x))Tu [u(x,a)] + (Tu  - Tu0 ) [u(x,a)] ,

and

(5.8) \~H = \varepsilon (\partial xf)\partial xu(x,0) + \varepsilon 
f

a
G(\varepsilon f)[U ] - \varepsilon 2

f(\partial xf)

a
\partial xu(x,0) - \varepsilon 2(\partial xf)

2\partial zu(x,0).

It is not difficult to see that the forms for the Aj , Bj , and Sj are

A0 =

\biggl( 
1 0
0 1

\biggr) 
,(5.9a)

A1(f) =

\biggl( 
Axx1 Axz1
Azx1 Azz1

\biggr) 
=

1

a

\biggl( 
 - 2f  - (a - z)(\partial xf)

 - (a - z)(\partial xf) 0

\biggr) 
,(5.9b)

A2(f) =

\biggl( 
Axx2 Axz2
Azx2 Azz2

\biggr) 
=

1

a2

\biggl( 
f2 (a - z)f(\partial xf)

(a - z)f(\partial xf) (a - z)2(\partial xf)
2

\biggr) 
,(5.9c)

and

(5.10) B1(f) =

\biggl( 
Bx1
Bz1

\biggr) 
=

1

a

\biggl( 
\partial xf
0

\biggr) 
, B2(f) =

\biggl( 
Bx2
Bz2

\biggr) 
=

1

a2

\biggl( 
 - f(\partial xf)

 - (a - z)(\partial xf)
2

\biggr) 
,

and

(5.11) S0 = 1, S1(f) = - 2

a
f, S2(f) =

1

a2
f2.

At this point we posit the expansions

u(x, z;\varepsilon , \delta ) =

\infty \sum 
n=0

\infty \sum 
m=0

un,m(x, z)\varepsilon n\delta m, G(\varepsilon , \delta ) =

\infty \sum 
n=0

\infty \sum 
m=0

Gn,m\varepsilon 
n\delta m,

and, upon insertion into (5.4) and (5.5), we find

\Delta un,m + 2i\alpha \partial xun,m + (\gamma u)2un,m = \~Fn,m(x, z), 0< z < a,(5.12a)

un,m(x,0) =Un,m(x), z = 0,(5.12b)

\partial zun,m(x,a) - Tu0 [un,m(x,a)] = \~Pn,m(x), z = a,(5.12c)

un,m(x+ d, z) = un,m(x, z),(5.12d)

and

(5.13) Gn,m(f) = - \partial zun,m(x,0) + \~Hn,m(x).
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JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1753

The formulas for \~Fn,m, \~Pn,m, and \~Hn,m can be readily derived from (5.6), (5.7), and
(5.8) giving

\~Fn,m = - div [A1(f)\nabla un - 1,m] - div [A2(f)\nabla un - 2,m]

 - B1(f)\nabla un - 1,m  - B2(f)\nabla un - 2,m

 - 2i\alpha \partial xun,m - 1  - (\gamma u)2un,m - 2  - 2(\gamma u)2un,m - 1

 - 2iS1(f)\alpha \partial xun - 1,m  - 2iS1(f)\alpha \partial xun - 1,m - 1  - S1(f)(\gamma 
u)2un - 1,m - 2

 - 2S1(f)(\gamma 
u)2un - 1,m - 1  - S1(f)(\gamma 

u)2un - 1,m

 - 2iS2(f)\alpha \partial xun - 2,m  - 2iS2(f)\alpha \partial xun - 2,m - 1  - S2(f)(\gamma 
u)2un - 2,m - 2

 - 2S2(f)(\gamma 
u)2un - 2,m - 1  - S2(f)(\gamma 

u)2un - 2,m,(5.14)

and

(5.15) \~Pn,m = - 1

a
f(x)

m\sum 
r=0

Tum - r [un - 1,r(x,a)] +

m - 1\sum 
r=0

Tum - r [un,r(x,a)] ,

and

\~Hn,m = (\partial xf)\partial xun - 1,m(x,0) +
f

a
Gn - 1,m(f)[U ] - f(\partial xf)

a
\partial xun - 2,m(x,0)

 - (\partial xf)
2\partial zun - 2,m(x,0).(5.16)

5.2. Geometric analyticity of the upper field. To prove our joint analyticity
result we begin by stating the single, geometric, analyticity result for the field u
under boundary perturbation, \varepsilon , alone. This was essentially established in [56] but
we present it here for completeness.

Theorem 5.1. Given any integer s \geq 0, if f \in Cs+2([0, d]) and Un,0 \in 
Hs+3/2([0, d]) such that

(5.17) \| Un,0\| Hs+3/2 \leq KUB
n
U

for constants KU ,BU > 0, then un,0 \in Hs+2([0, d]\times [0, a]) and

(5.18) \| un,0\| Hs+2 \leq KBn

for constants K,B > 0.

To establish this we work by induction and the key estimate is the following
lemma.

Lemma 5.2. Given an integer s\geq 0, if f \in Cs+2([0, d]) and

(5.19) \| un,0\| Hs+2 \leq KBn for all n< n

for constants K,B > 0, then there exists a constant C > 0 such that

(5.20) max
\Bigl\{ \bigm\| \bigm\| \bigm\| \~Fn,0\bigm\| \bigm\| \bigm\| 

Hs
,
\bigm\| \bigm\| \bigm\| \~Pn,0\bigm\| \bigm\| \bigm\| 

Hs+1/2

\Bigr\} 
\leq KC

\Bigl\{ 
| f | Cs+2 B

n - 1 + | f | 2Cs+2 B
n - 2
\Bigr\} 
.

Proof of Lemma 5.2. We begin with \~Fn,0 and note that from (5.14), (5.9), (5.10),
and (5.11) we have
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1754 MATTHEW KEHOE AND DAVID P. NICHOLLS

\| \~Fn,0\| 2Hs \leq \| Axx1 \partial xun - 1,0\| 2Hs+1 + \| Axz1 \partial zun - 1,0\| 2Hs+1 + \| Azx1 \partial xun - 1,0\| 2Hs+1

+ \| Azz1 \partial zun - 1,0\| 2Hs+1 + \| Axx2 \partial xun - 2,0\| 2Hs+1 + \| Axz2 \partial zun - 2,0\| 2Hs+1

+ \| Azx2 \partial xun - 2,0\| 2Hs+1 + \| Azz2 \partial zun - 2,0\| 2Hs+1 + \| Bx1\partial xun - 1,0\| 2Hs

+ \| Bz1\partial zun - 1,0\| 2Hs + \| Bx2\partial xun - 2,0\| 2Hs + \| Bz2\partial zun - 2,0\| 2Hs

+ \| 2S1i\alpha \partial xun - 1,0\| 2Hs + \| S1(\gamma 
u)2un - 1,0\| 2Hs + \| 2S2i\alpha \partial xun - 2,0\| 2Hs

+ \| S2(\gamma 
u)2un - 2,0\| 2Hs .

We now estimate each of these by applying Lemmas 4.4 and 4.6. We begin with

\| Axx1 \partial xun - 1,0\| Hs+1 = \|  - (2/a)f\partial xun - 1,0\| Hs+1

\leq (2/a)\scrM | f | Cs+1\| un - 1,0\| Hs+2

\leq (2/a)\scrM | f | Cs+1KBn - 1,

and in a similar fashion

\| Axz1 \partial zun - 1,0\| Hs+1 = \|  - ((a - z)/a)(\partial xf)\partial zun - 1,0\| Hs+1

\leq (Za/a)\scrM | \partial xf | Cs+1\| un - 1,0\| Hs+2

\leq (Za/a)\scrM | f | Cs+2KBn - 1.

Also,

\| Azx1 \partial xun - 1,0\| Hs+1 = \|  - ((a - z)/a)(\partial xf)\partial xun - 1,0\| Hs+1

\leq (Za/a)\scrM | \partial xf | Cs+1\| un - 1,0\| Hs+2

\leq (Za/a)\scrM | f | Cs+2KBn - 1,

and we recall that Azz1 \equiv 0. Moving to the second order

\| Axx2 \partial xun - 2,0\| Hs+1 = \| (1/a2)f2\partial xun - 2,0\| Hs+1

\leq (1/a2)\scrM 2| f | 2Cs+1\| un - 2,0\| Hs+2

\leq (1/a2)\scrM 2| f | 2Cs+1KBn - 2.

Also,

\| Axz2 \partial zun - 2,0\| Hs+1 = \| ((a - z)/a2)f(\partial xf)\partial xun - 2,0\| Hs+1

\leq (Za/a
2)\scrM 2| f | Cs+1 | \partial xf | Cs+1\| un - 2,0\| Hs+2

\leq (Za/a
2)\scrM 2| f | 2Cs+2KBn - 2,

and

\| Azx2 \partial xun - 2,0\| Hs+1 = \| ((a - z)/a2)f(\partial xf)\partial zun - 2,0\| Hs+1

\leq (Za/a
2)\scrM 2| f | Cs+1 | \partial xf | Cs+1\| un - 2,0\| Hs+2

\leq (Za/a
2)\scrM 2| f | 2Cs+2KBn - 2,

and

\| Azz2 \partial zun - 2,0\| Hs+1 = \| ((a - z)2/a2)(\partial xf)
2\partial zun - 2,0\| Hs+1

\leq (Z2
a/a

2)\scrM 2| \partial xf | 2Cs+1\| un - 2,0\| Hs+2

\leq (Z2
a/a

2)\scrM 2| f | 2Cs+2KBn - 2.
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JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1755

Next for the B1 terms

\| Bx1\partial xun - 1,0\| Hs = \| (1/a)(\partial xf)\partial xun - 1,0\| Hs

\leq (1/a)\scrM | \partial xf | Cs\| un - 1,0\| Hs+1

\leq (1/a)\scrM | f | Cs+1KBn - 1,

and Bz1 \equiv 0. Moving to the second order

\| Bx2\partial xun - 2,0\| Hs = \| ( - 1/a2)f(\partial xf)\partial xun - 2,0\| Hs

\leq (1/a2)\scrM 2| f | Cs | \partial xf | Cs\| un - 2,0\| Hs+1

\leq (1/a2)\scrM 2| f | 2Cs+1KBn - 2,

and

\| Bz2\partial zun - 2,0\| Hs = \| ( - 1/a2)(a - z)(\partial xf)
2\partial zun - 2,0\| Hs

\leq (Za/a
2)\scrM 2| \partial xf | 2Cs\| un - 2,0\| Hs+1

\leq (Za/a
2)\scrM 2| f | 2Cs+1KBn - 2.

To address the S0, S1, S2 terms we have

\| 2S1i\alpha \partial xun - 1,0\| Hs = \| ( - 4/a)i\alpha f\partial xun - 1,0\| Hs

\leq (4/a)\alpha \scrM | f | Cs\| un - 1,0\| Hs+1

\leq (4/a)\alpha \scrM | f | CsKBn - 1,

and

\| S1(\gamma 
u)2un - 1,0\| Hs = \| ( - 2/a)(\gamma u)2fun - 1,0\| Hs

\leq (2/a)(\gamma u)2\scrM | f | Cs\| un - 1,0\| Hs

\leq (2/a)(\gamma u)2\scrM | f | CsKBn - 1,

and

\| 2S2i\alpha \partial xun - 2,0\| Hs = \| (2/a2)i\alpha f2\partial xun - 2,0\| Hs

\leq (2/a2)\alpha \scrM 2| f | 2Cs\| un - 2,0\| Hs+1

\leq (2/a2)\alpha \scrM 2| f | 2CsKBn - 2,

and

\| S2(\gamma 
u)2un - 2,0\| Hs = \| (1/a2)(\gamma u)2f2un - 2,0\| Hs

\leq (1/a2)(\gamma u)2\scrM 2| f | 2Cs\| un - 2,0\| Hs

\leq (1/a2)(\gamma u)2\scrM 2| f | 2CsKBn - 2.

We satisfy the estimate for \| \~Fn,0\| Hs provided that we choose

C >max

\Biggl\{ \Biggl( 
3 + 2Za + 4\alpha + 2(\gamma u)2

a

\Biggr) 
\scrM ,

\Biggl( 
2 + 3Za +Z2

a + 2\alpha + (\gamma u)2

a2

\Biggr) 
\scrM 2

\Biggr\} 
.
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1756 MATTHEW KEHOE AND DAVID P. NICHOLLS

The estimate for \~Pn,0 follows from an elementary estimate on the order-one Fourier
multiplier Tu0

\| \~Pn,0\| Hs+1/2 = \|  - (1/a)fTu0 [un - 1,0]\| Hs+1/2

\leq (1/a)\scrM | f | Cs+1/2+\eta \| Tu0 [un - 1,0]\| Hs+1/2

\leq (1/a)\scrM | f | Cs+1/2+\eta CTu
0
\| un - 1,0\| Hs+3/2

\leq (1/a)\scrM | f | Cs+1/2+\eta CTu
0
KBn - 1,

and provided that

C > (1/a)\scrM CTu
0
,

we are done.

With this information, we can now prove Theorem 5.1.

Proof of Theorem 5.1. We proceed by induction in n and at order n = 0 and
m= 0 Theorem 4.5 guarantees a unique solution such that

\| u0,0\| Hs+2 \leq Ce\| U0,0\| Hs+3/2 .

So we choose K \geq Ce\| U0,0\| Hs+3/2 . We now assume the estimate (5.18) for all n < n
and study un,0. From Theorem 4.5 we have a unique solution satisfying

\| un,0\| Hs+2 \leq Ce\{ \| \~Fn,0\| Hs + \| Un,0\| Hs+3/2 + \| \~Pn,0\| Hs+1/2\} ,
and appealing to the hypothesis (5.17) and Lemma 5.2 we find

\| un,0\| Hs+2 \leq Ce\{ KUB
n
U + 2KC

\bigl[ 
| f | Cs+2Bn - 1 + | f | 2Cs+2Bn - 2

\bigr] 
\} .

We are done provided we choose K \geq 3CeKU and

B >max
\Bigl\{ 
BU ,6CeC| f | Cs+2 ,

\sqrt{} 
6CeC| f | Cs+2

\Bigr\} 
.

Analogous results hold in the lower field which we record here for completeness.

Theorem 5.3. Given any integer s \geq 0, if f \in Cs+2([0, d]) and Wn,0 \in 
Hs+3/2([0, d]) such that

\| Wn,0\| Hs+3/2 \leq KWB
n
W

for constants KW ,BW > 0, then wn,0 \in Hs+2([0, d]\times [ - b,0]) and
\| wn,0\| Hs+2 \leq KBn

for constants K,B > 0.

5.3. Joint analyticity of the upper field. We can now proceed to prove our
main result concerning joint analyticity of the transformed field.

Theorem 5.4. Given any integer s \geq 0, if f \in Cs+2([0, d]) and Un,m \in 
Hs+3/2([0, d]) such that

(5.21) \| Un,m\| Hs+3/2 \leq KUB
n
UD

m
U

for constants KU ,BU ,DU > 0, then un,m \in Hs+2([0, d]\times [0, a]) and

(5.22) \| un,m\| Hs+2 \leq KBnDm

for constants K,B,D > 0.

As before, we establish this result by induction.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

9/
23

 to
 1

31
.1

93
.1

78
.8

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1757

Lemma 5.5. Given an integer s\geq 0, if f \in Cs+2([0, d]) and

(5.23) \| un,m\| Hs+2 \leq KBnDm for all n\geq 0,m<m

for constants K,B,D > 0, then there exists a constant C > 0 such that

max\{ \| \~Fn,m\| Hs ,\| \~Pn,m\| Hs+1/2\} \leq KC

\biggl\{ 
BnDm - 1 +BnDm - 2 + | f | Cs+2Bn - 1Dm+

| f | Cs+2Bn - 1Dm - 1 + | f | Cs+2Bn - 1Dm - 2 + | f | 2Cs+2Bn - 2Dm+

| f | 2Cs+2Bn - 2Dm - 1 + | f | 2Cs+2Bn - 2Dm - 2

\biggr\} 
.

Proof of Lemma 5.5. We begin with \~Fn,m and note that from (5.14), (5.9), (5.10),
and (5.11) we have

\| \~Fn,m\| 2Hs \leq \| Axx1 \partial xun - 1,m\| 2Hs+1 + \| Axz1 \partial zun - 1,m\| 2Hs+1 + \| Azx1 \partial xun - 1,m\| 2Hs+1

+ \| Azz1 \partial zun - 1,m\| 2Hs+1 + \| Axx2 \partial xun - 2,m\| 2Hs+1 + \| Axz2 \partial zun - 2,m\| 2Hs+1

+ \| Azx2 \partial xun - 2,m\| 2Hs+1 + \| Azz2 \partial zun - 2,m\| 2Hs+1 + \| Bx1\partial xun - 1,m\| 2Hs

+ \| Bz1\partial zun - 1,m\| 2Hs + \| Bx2\partial xun - 2,m\| 2Hs + \| Bz2\partial zun - 2,m\| 2Hs

+ \| 2i\alpha \partial xun,m - 1\| 2Hs + \| (\gamma u)2un,m - 2\| 2Hs + \| 2(\gamma u)2un,m - 1\| 2Hs

+ \| 2S1i\alpha \partial xun - 1,m\| 2Hs + \| 2S1i\alpha \partial xun - 1,m - 1\| 2Hs + \| S1(\gamma 
u)2un - 1,m - 2\| 2Hs

+ \| 2S1(\gamma 
u)2un - 1,m - 1\| 2Hs + \| S1(\gamma 

u)2un - 1,m\| 2Hs + \| 2S2i\alpha \partial xun - 2,m\| 2Hs

+ \| 2S2i\alpha \partial xun - 2,m - 1\| 2Hs + \| S2(\gamma 
u)2un - 2,m - 2\| 2Hs

+ \| 2S2(\gamma 
u)2un - 2,m - 1\| 2Hs + \| S2(\gamma 

u)2un - 2,m\| 2Hs .

We now estimate each of these by applying Lemmas 4.4 and 4.6. We begin with

\| Axx1 \partial xun - 1,m\| Hs+1 = \|  - (2/a)f\partial xun - 1,m\| Hs+1

\leq (2/a)\scrM | f | Cs+1\| un - 1,m\| Hs+2

\leq (2/a)\scrM | f | Cs+1KBn - 1Dm,

and in a similar fashion

\| Axz1 \partial zun - 1,m\| Hs+1 = \|  - ((a - z)/a)(\partial xf)\partial zun - 1,m\| Hs+1

\leq (Za/a)\scrM | \partial xf | Cs+1\| un - 1,m\| Hs+2

\leq (Za/a)\scrM | f | Cs+2KBn - 1Dm.

Also,

\| Azx1 \partial xun - 1,m\| Hs+1 = \|  - ((a - z)/a)(\partial xf)\partial xun - 1,m\| Hs+1

\leq (Za/a)\scrM | \partial xf | Cs+1\| un - 1,m\| Hs+2

\leq (Za/a)\scrM | f | Cs+2KBn - 1Dm,

and we recall that Azz1 \equiv 0. Moving to the second order

\| Axx2 \partial xun - 2,m\| Hs+1 = \| (1/a2)f2\partial xun - 2,m\| Hs+1

\leq (1/a2)\scrM 2| f | 2Cs+1\| un - 2,m\| Hs+2

\leq (1/a2)\scrM 2| f | 2Cs+1KBn - 2Dm.
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1758 MATTHEW KEHOE AND DAVID P. NICHOLLS

Also,

\| Axz2 \partial zun - 2,m\| Hs+1 = \| ((a - z)/a2)f(\partial xf)\partial xun - 2,m\| Hs+1

\leq (Za/a
2)\scrM 2| f | Cs+1 | \partial xf | Cs+1\| un - 2,m\| Hs+2

\leq (Za/a
2)\scrM 2| f | 2Cs+2KBn - 2Dm,

and

\| Azx2 \partial xun - 2,m\| Hs+1 = \| ((a - z)/a2)f(\partial xf)\partial zun - 2,m\| Hs+1

\leq (Za/a
2)\scrM 2| f | Cs+1 | \partial xf | Cs+1\| un - 2,m\| Hs+2

\leq (Za/a
2)\scrM 2| f | 2Cs+2KBn - 2Dm,

and

\| Azz2 \partial zun - 2,m\| Hs+1 = \| ((a - z)2/a2)(\partial xf)
2\partial zun - 2,m\| Hs+1

\leq (Z2
a/a

2)\scrM 2| \partial xf | 2Cs+1\| un - 2,m\| Hs+2

\leq (Z2
a/a

2)\scrM 2| f | 2Cs+2KBn - 2Dm.

Next for the B1 terms

\| Bx1\partial xun - 1,m\| Hs = \| (1/a)(\partial xf)\partial xun - 1,m\| Hs

\leq (1/a)\scrM | \partial xf | Cs\| un - 1,m\| Hs+1

\leq (1/a)\scrM | f | Cs+1KBn - 1Dm,

and Bz1 \equiv 0. Moving to the second order

\| Bx2\partial xun - 2,m\| Hs = \| ( - 1/a2)f(\partial xf)\partial xun - 2,m\| Hs

\leq (1/a2)\scrM 2| f | Cs | \partial xf | Cs\| un - 2,m\| Hs+1

\leq (1/a2)\scrM 2| f | 2Cs+1KBn - 2Dm,

and

\| Bz2\partial zun - 2,m\| Hs = \| ( - 1/a2)(a - z)(\partial xf)
2\partial zun - 2,m\| Hs

\leq (Za/a
2)\scrM 2| \partial xf | 2Cs\| un - 2,m\| Hs+1

\leq (Za/a
2)\scrM 2| f | 2Cs+1KBn - 2Dm.

To address the S0, S1, S2 terms we have

\| 2i\alpha \partial xun,m - 1\| Hs \leq 2\alpha \| un,m - 1\| Hs+1

\leq 2\alpha KBnDm - 1,

and

\| (\gamma u)2un,m - 2\| Hs \leq (\gamma u)2\| un,m - 2\| Hs

\leq (\gamma u)2KBnDm - 2,

and

\| 2(\gamma u)2un,m - 1\| Hs \leq 2(\gamma u)2\| un,m - 1\| Hs

\leq 2(\gamma u)2KBnDm - 1,
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JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1759

and

\| 2S1i\alpha \partial xun - 1,m\| Hs = \| ( - 4/a)i\alpha f\partial xun - 1,m\| Hs

\leq (4/a)\alpha \scrM | f | Cs\| un - 1,m\| Hs+1

\leq (4/a)\alpha \scrM | f | CsKBn - 1Dm,

and

\| 2S1i\alpha \partial xun - 1,m - 1\| Hs = \| ( - 4/a)i\alpha f\partial xun - 1,m - 1\| Hs

\leq (4/a)\alpha \scrM | f | Cs\| un - 1,m - 1\| Hs+1

\leq (4/a)\alpha \scrM | f | CsKBn - 1Dm - 1,

and

\| S1(\gamma 
u)2un - 1,m - 2\| Hs = \| ( - 2/a)(\gamma u)2fun - 1,m - 2\| Hs

\leq (2/a)(\gamma u)2\scrM | f | Cs\| un - 1,m - 2\| Hs

\leq (2/a)(\gamma u)2\scrM | f | CsKBn - 1Dm - 2,

and

\| 2S1(\gamma 
u)2un - 1,m - 1\| Hs = \| ( - 4/a)(\gamma u)2fun - 1,m - 1\| Hs

\leq (4/a)(\gamma u)2\scrM | f | Cs\| un - 1,m - 1\| Hs

\leq (4/a)(\gamma u)2\scrM | f | CsKBn - 1Dm - 1,

and

\| S1(\gamma 
u)2un - 1,m\| Hs = \| ( - 2/a)(\gamma u)2fun - 1,m\| Hs

\leq (2/a)(\gamma u)2\scrM | f | Cs\| un - 1,m\| Hs

\leq (2/a)(\gamma u)2\scrM | f | CsKBn - 1Dm,

and

\| 2S2i\alpha \partial xun - 2,m\| Hs = \| (2/a2)i\alpha f2\partial xun - 2,m\| Hs

\leq (2/a2)\alpha \scrM 2| f | 2Cs\| un - 2,m\| Hs+1

\leq (2/a2)\alpha \scrM 2| f | 2CsKBn - 2Dm,

and

\| 2S2i\alpha \partial xun - 2,m - 1\| Hs = \| (2/a2)i\alpha f2\partial xun - 2,m - 1\| Hs

\leq (2/a2)\alpha \scrM 2| f | 2Cs\| un - 2,m - 1\| Hs+1

\leq (2/a2)\alpha \scrM 2| f | 2CsKBn - 2Dm - 1,

and

\| S2(\gamma 
u)2un - 2,m - 2\| Hs = \| (1/a2)(\gamma u)2f2un - 2,m - 2\| Hs

\leq (1/a2)(\gamma u)2\scrM 2| f | 2Cs\| un - 2,m - 2\| Hs

\leq (1/a2)(\gamma u)2\scrM 2| f | 2CsKBn - 2Dm - 2,
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1760 MATTHEW KEHOE AND DAVID P. NICHOLLS

and

\| 2S2(\gamma 
u)2un - 2,m - 1\| Hs = \| (2/a2)(\gamma u)2f2un - 2,m - 1\| Hs

\leq (2/a2)(\gamma u)2\scrM 2| f | 2Cs\| un - 2,m - 1\| Hs

\leq (2/a2)(\gamma u)2\scrM 2| f | 2CsKBn - 2Dm - 1,

and

\| S2(\gamma 
u)2un - 2,m\| Hs = \| (1/a2)(\gamma u)2f2un - 2,m\| Hs

\leq (1/a2)(\gamma u)2\scrM 2| f | 2Cs\| un - 2,m\| Hs

\leq (1/a2)(\gamma u)2\scrM 2| f | 2CsKBn - 2Dm.

We satisfy the estimate for \| \~Fn,m\| Hs provided that we choose

C >max

\Biggl\{ \biggl( 
2\alpha + 3(\gamma u)2

\biggr) 
,

\Biggl( 
3 + 2Za + 8\alpha + 8(\gamma u)2

a

\Biggr) 
\scrM ,\Biggl( 

2 + 3Za +Z2
a + 4\alpha + 4(\gamma u)2

a2

\Biggr) 
\scrM 2

\Biggr\} 
.

The estimate for \~Pn,m follows from the mapping properties of Tu,

\bigm\| \bigm\| \bigm\| \~Pn,m\bigm\| \bigm\| \bigm\| 
Hs+1/2

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\|  - 1

a
f(x)

m\sum 
r=0

Tum - r [un - 1,r] +

m - 1\sum 
r=0

Tum - r [un,r]

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Hs+1/2

\leq (1/a)\scrM | f | Cs+1/2+\eta 

m\sum 
r=0

\bigm\| \bigm\| Tum - r[un - 1,r]
\bigm\| \bigm\| 
Hs+1/2 +

m - 1\sum 
r=0

\bigm\| \bigm\| Tum - r[un,r]
\bigm\| \bigm\| 
Hs+1/2

\leq (1/a)\scrM | f | Cs+1/2+\eta CTu

m\sum 
r=0

\| un - 1,r\| Hs+3/2 +CTu

m - 1\sum 
r=0

\| un,r\| Hs+3/2

\leq (1/a)\scrM | f | Cs+1/2+\eta CTuKBn - 1

\biggl( 
Dm+1  - 1

D - 1

\biggr) 
+CTuKBn

\biggl( 
Dm  - 1

D - 1

\biggr) 
,

and provided that D> 2 and

C >max
\bigl\{ 
(1/a)\scrM CTu ,CTu

\bigr\} 
we are done.

With this information, we can now prove Theorem 5.4.

Proof of Theorem 5.4. We proceed by induction inm and at orderm= 0 Theorem
5.1 guarantees a unique solution such that

\| un,0\| Hs+2 \leq KBn for alln\geq 0.

We now assume the estimate (5.22) for all n,m<m and study un,m. From Theorem
4.5 we have a unique solution satisfying

\| un,m\| Hs+2 \leq Ce\{ \| \~Fn,m\| Hs + \| Un,m\| Hs+3/2 + \| \~Pn,m\| Hs+1/2\} ,
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JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1761

and appealing to the hypothesis (5.21) and Lemma 5.5 we find

\| un,m\| Hs+2 \leq Ce
\Biggl\{ 
KUB

n
UD

m
U + 2KC

\biggl( 
BnDm - 1 +BnDm - 2 + | f | Cs+2Bn - 1Dm+

| f | Cs+2Bn - 1Dm - 1 + | f | Cs+2Bn - 1Dm - 2 + | f | 2Cs+2Bn - 2Dm+

| f | 2Cs+2Bn - 2Dm - 1 + | f | 2Cs+2Bn - 2Dm - 2

\biggr) \Biggr\} 
.

We are done provided we choose K \geq 9CeKU and

B >max
\Bigl\{ 
BU ,18CeC| f | Cs+2 ,

\sqrt{} 
18CeC| f | Cs+2

\Bigr\} 
,

D >max
\Bigl\{ 
1,DU ,18CeC,

\sqrt{} 
18CeC

\Bigr\} 
.

As before, a similar analysis will establish the joint analyticity of the lower field
which we now record.

Theorem 5.6. Given any integer s \geq 0, if f \in Cs+2([0, d]) and Wn,m \in 
Hs+3/2([0, d]) such that

\| Wn,m\| Hs+3/2 \leq KWB
n
WD

m
W

for constants KW ,BW ,DW > 0, then wn,m \in Hs+2([0, d]\times [ - b,0]) and

\| wn,m\| Hs+2 \leq KBnDm

for constants K,B,D > 0.

6. Analyticity of the DNOs. Now that we have established the joint analyt-
icity of the upper field u we move to establishing the analyticity of the upper layer
DNO, G(g) =G(\varepsilon f). To begin we give a recursive estimate of the \~Hn,m appearing in
(5.16).

Lemma 6.1. Given an integer s\geq 0, if f \in Cs+2([0, d]) and

(6.1) \| un,m\| Hs+2 \leq KBnDm, \| Gn,m\| Hs+1/2 \leq \~K \~Bn \~Dm for all n< n,m\geq 0

for constants K,B,D, \~K, \~B, \~D > 0, where \~K \geq K, \~B \geq B, \~D \geq D, then there exists a
constant \~C > 0 such that

(6.2) \| \~Hn,m\| Hs+1/2 \leq \~K \~C
\Bigl\{ 
| f | Cs+2 \~Bn - 1 \~Dm + | f | 2Cs+2

\~Bn - 2 \~Dm
\Bigr\} 
.

Proof of Lemma 6.1. From (5.16) we estimate

\| \~Hn,m\| Hs+1/2 \leq \scrM | \partial xf | Cs+1/2+\eta \| \partial xun - 1,m(x,0)\| Hs+1/2

+
1

a
\scrM | f | Cs+1/2+\eta \| Gn - 1,m(f)[U ]\| Hs+1/2

+
1

a
\scrM 2| f | Cs+1/2+\eta | \partial xf | Cs+1/2+\eta \| \partial xun - 2,m(x,0)\| Hs+1/2

+\scrM 2| \partial xf | 2Cs+1/2+\eta \| \partial zun - 2,m(x,0)\| Hs+1/2 .
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1762 MATTHEW KEHOE AND DAVID P. NICHOLLS

This gives

\| \~Hn,m\| Hs+1/2 \leq \~K
\Bigl\{ 
\scrM | f | Cs+2 \~Bn - 1 \~Dm +

1

a
\scrM | f | Cs+2 \~Bn - 1 \~Dm

+
1

a
\scrM 2| f | 2Cs+2

\~Bn - 2 \~Dm +\scrM 2| f | 2Cs+2
\~Bn - 2 \~Dm

\Bigr\} 
,

and we are done provided

\~C \geq 
\biggl( 
1 +

1

a

\biggr) 
max\{ \scrM ,\scrM 2\} .

We now have everything we need to prove the analyticity of the upper layer DNO.

Theorem 6.2. Given any integer s \geq 0, if f \in Cs+2([0, d]) and Un,m \in 
Hs+3/2([0, d]) such that

\| Un,m\| Hs+3/2 \leq KUB
n
UD

m
U

for constants KU ,BU ,DU > 0, then Gn,m \in Hs+1/2([0, d]) and

(6.3) \| Gn,m\| Hs+1/2 \leq \~K \~Bn \~Dm

for constants \~K, \~B, \~D> 0.

Proof of Theorem 6.2. As before, we work by induction in n. At n = 0 we have
from (5.13) that

G0,m = - \partial zu0,m(x,0),

and from Theorem 5.4 we have

\| G0,m\| Hs+1/2 = \| \partial zu0,m(x,0)\| Hs+1/2 \leq \| u0,m\| Hs+2 \leq KDm.

So we choose \~K \geq K and \~D \geq D. We now assume \~B \geq B and the estimate (6.3) for
all n< n; from (5.13) we have

\| Gn,m(f)[U ]\| Hs+1/2 \leq \| \partial zun,m(x,0)\| Hs+1/2 + \| \~Hn,m(x)\| Hs+1/2 .

Using the inductive hypothesis, Lemma 6.1, and Theorem 5.4 we have

\| Gn,m(f)[U ]\| Hs+1/2 \leq KBnDm + \~K \~C
\Bigl\{ 
| f | Cs+2 \~Bn - 1 \~Dm + | f | 2Cs+2

\~Bn - 2 \~Dm
\Bigr\} 
.

We are done provided \~K \geq 2K and

\~B \geq max
\Bigl\{ 
B,4 \~C| f | Cs+2 ,2

\sqrt{} 
\~C| f | Cs+2

\Bigr\} 
.

Finally, a similar approach will give the joint analyticity of the DNO in the lower
field.

Theorem 6.3. Given any integer s \geq 0, if f \in Cs+2([0, d]) and Wn,m \in 
Hs+3/2([0, d]) such that

\| Wn,m\| Hs+3/2 \leq KWB
n
WD

m
W
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JOINT ANALYTICITY OF PERIODIC SCATTERED FIELDS 1763

for constants KW ,BW ,DW > 0, then Jn,m \in Hs+1/2([0, d]) and

(6.4) \| Jn,m\| Hs+1/2 \leq \~K \~Bn \~Dm

for constants \~K, \~B, \~D> 0.

Remark 6.4. For the parametric, (\varepsilon , \delta ), analyticity we investigate in this paper,
the smoothness we assume of the interface, f(x) \in Cs+2, s\geq 0, is sufficient to justify
the transformation (5.1) and all of the steps we have taken. We note that our TFE
approach equivalently states the DNO in terms of the transformed field, u\prime (rather
than u), thereby delivering the analyticity result (Theorem 6.2). However, this is not
the only result one could ponder. For instance, an interesting query is the (joint)
smoothness of the DNO with respect to parameters and spatial variable, x. For
instance, based upon our results in [58], we expect that mandating that f be analytic
would deliver spatial analyticity of the DNO. Additionally, one could investigate the
smoothness of the untransformed field, u, which would require the inversion of (5.1)
and an accounting of its regularity. We leave these fascinating and important follow-
up questions for future work.
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